
COMPUTING ELLIPTIC CURVES OVER Q

MICHAEL A. BENNETT, ADELA GHERGA, AND ANDREW RECHNITZER

Abstract. We discuss an algorithm for finding all elliptic curves over Q with a given
conductor. Though based on classical ideas derived from reducing the problem to one of
solving associated Thue-Mahler equations, our approach, in many cases at least, appears
to be reasonably efficient computationally. We provide details of the output derived from
running the algorithm, concentrating on the cases of conductor p or p2, for p prime, with
comparisons to existing data.

1. Introduction

A classical result of Shafarevich [59] implies that, given fixed set of prime numbers S,
there are only finitely many Q-isomorphism classes of elliptic curves defined over Q with
good reduction outside S. In 1970, Coates [13] proved an effective version of this theorem,
using bounds for linear forms in p-adic and complex logarithms. Early attempts to make
these results explicit, for fixed sets of small primes, overlap with the arguments of [13], in
that they reduce the problem to solving a number of Thue-Mahler equations. These are
Diophantine equations of the form

F (x, y) = u. (1)

Here, F is a binary form of degree 3 or greater, with integer coefficients, and u is an S-unit
– an integer whose prime factors are contained in S. The number of solutions in relatively
prime integers x and y to equation (1), provided that F is irreducible, is known to be finite,
via work of Mahler [39]. This generalizes a classical result of Thue [67] who had proved an
analogous statement for the case of u fixed in equation (1). When F is a reducible form in
Z[x, y], equation (1) is typically less difficult to solve; in the context of finding elliptic curves,
this situation arises from consideration of elliptic curves with at least one nontrivial rational
2-torsion point. The first examples where all elliptic curves E/Q with good reduction outside
a given set S were determined were for S = {2, 3} by Coghlan [14] and Stephens [65] (see also
[8]), and for S = {p} for certain small primes p – see e.g. Setzer [58] and Neumann [49]. Each
of these examples corresponds, via our approach, to cases with reducible forms. Agrawal,
Coates, Hunt and van der Poorten [1] carried out the first analysis where irreducible forms
in equation (1) were treated to find elliptic curves of given conductor (dealing with the case
S = {11}). In this situation, the reduction to equation (1) is not particular involved, but
subsequent computations are quite difficult; they use arguments from [13] and a range of
techniques from computational Diophantine approximation.

It appears that there are very few subsequent attempts in the literature to compute elliptic
curves of given conductor through the solution of Thue-Mahler equations. Instead, one finds
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a wealth of results which approach the problem via modular forms. This route relies upon
the Modularity theorem (see Wiles [74] and Breuil, Conrad, Diamond and Taylor [10]),
which was actually still conjectural when these ideas were first implemented. To find all
E/Q of conductor N by this method, one computes the space of Γ0(N) modular symbols
and the action of the Hecke algebra on it, and then searches for one-dimensional rational
eigenspaces. After calculating a large number of Hecke eigenvalues, one is then able to extract
corresponding elliptic curves. For a detailed description of how this technique works, the
reader is directed to [16]. The great computational success of this approach can be primarily
attributed to Cremona (see e.g. [15], [16]) and his collaborators; they have devoted many
years of work to it and are responsible for the current state-of-the-art. In particular, at the
time of writing in 2017, all E/Q of conductor N ≤ 400000 have been determined by these
methods.

In the paper at hand, we return to techniques based upon solving Thue-Mahler equations,
using a number of results from classical invariant theory. Our aim is to give a straightforward
demonstration of the link between the conductors in question and the corresponding equa-
tions, and to make the Diophantine approximation problem that follows as easy to tackle as
possible. It is worth noting here that these connections are quite straightforward for primes
p > 3, but require careful analysis at the primes 2 and 3. We will demonstrate our approach
for a number of specific conductors and sets S, and then focus our main computational efforts
on curves with bad reduction at a single prime (i.e. curves of conductor p or p2 for p prime).
In these cases, the computations simplify significantly and we are able to find all curves
of prime conductor up to 2 × 109 (1010 in the case of curves of positive discriminant) and
conductor p2 for p ≤ 5× 105. We then extend these computations in the case of conductor
p, for prime p ≤ 2 × 1013, and conductor p2 for prime p ≤ 1010. We are not, however, able
to guarantee completeness for these extended computations (we will discuss this further in
what follows).

The outline of this paper is as follows. In Section 2, we discuss some basic facts about
elliptic curves, with corresponding notation. In Section 3, we review the invariant theory
of cubic forms and state our main theorem upon which our algorithm is based. Section 4
contains the proof of this theorem. Section 5 is devoted to the actual computation of the
cubic forms we require. We provide a few examples of our approach for composite conductors
in Section 6. Specifically, we find all elliptic curves E/Q with conductor N for

N ∈ {399993, 999999, 999999999, 2655632887, 3305354359}

and all E/Q with good reduction outside S, where

S = {2, 3, 23} and S = {2, 3, 5, 7, 11}.

These last two examples have been considered recently by other authors ([36] and [37]), using
different techniques.

The remainder of the paper is devoted to finding curves with bad reduction at a single
prime p, i.e. those of conductor N = p or p2. We indicate in Section 7 how the problem of
computing elliptic curves over Q of fixed conductor simplifies considerably in such a situation
and set the stage for our main computation. In Section 8, we provide a variety of further
details for these cases and an outline of a heuristic approach to the problem that enables us
to work with curves of quite large conductor (allowing us to find, in all likelihood, all elliptic
curves of prime conductor p for p < 2 × 1013). Here, the obstruction to a deterministic
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solution to our problem for such large values of p is provided by the existence of extremely
large fundamental units in corresponding cubic fields. Section 9 contains an overview of
our output, with comparisons to previous results in the literature. Finally, in Section 10,
we provide an argument to show that any elliptic curve that has not been detected by our
“heuristic” approach corresponds to a record-setting “Hall ratio”, that is, an example of
integers x and y where the (nonzero) difference |x3 − y2| is unusually small.

2. Elliptic curves

Our basic problem is to find a model for each isomorphism class of elliptic curves over Q
with a given conductor. Let S = {p1, p2, . . . , pk} where the pi are distinct primes, and fix a
conductor N = pη11 · · · p

ηk
k for ηi ∈ N. Any curve of conductor N has a minimal model

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

with the ai integral and discriminant

∆E = (−1)δpγ11 · · · p
γk
k ,

where the γi are positive integers satisfying γi ≥ ηi, for each i = 1, 2, . . . , k, and δ ∈ {0, 1}.
Writing

b2 = a21 + 4a2, b4 = a1a3 + 2a4, b6 = a23 + 4a6, c4 = b22 − 24b4

and

c6 = −b32 + 36b2b4 − 216b6,

we have 1728∆E = c34 − c26 and jE = c34/∆E. It follows that

c26 = c34 + (−1)δ+126 · 33 · pγ11 · · · p
γk
k . (2)

In fact, it is equation (2) that lies at the heart of our method (see also Cremona and
Lingham [19] for an approach to the problem that takes as its starting point equation (2),
but subsequently heads in a rather different direction).

Let νp(x) be the largest power of a prime p dividing a nonzero integer x. Since our model
is minimal, we may suppose (via Tate’s algorithm; see, for example, Papadopoulos [50]) that

min{3νp(c4), 2νp(c6)} < 12 + 12νp(2) + 6νp(3),

for each prime p, while

νp(NE) ≤ 2 + νp(1728).

For future use, it will be helpful to have a somewhat more precise determination of the pos-
sible values of νp(c4) and νp(c6) we encounter. We compile this data from Papadopoulos [50]
and summarize it in Tables 1, 2 and 3.
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ν2(c4) ν2(c6) ν2(∆E) ν2(N)
0 0 ≥ 0 min{1, ν2(∆E)}

≥ 4 3 0 0
≥ 4 5 4 2, 3 or 4
≥ 4 ≥ 6 6 5 or 6

4 6 7 7
4 6 8 2, 3 or 4
4 6 9 5
4 6 10 or 11 3 or 4
4 6 ≥ 12 4
5 7 8 7

≥ 6 7 8 2, 3 or 4

ν2(c4) ν2(c6) ν2(∆E) ν2(N)
5 ≥ 8 9 8

≥ 6 8 10 6
6 ≥ 9 12 5 or 6
6 9 ≥ 14 6
7 9 12 5

≥ 8 9 12 4
6 9 13 7
7 10 14 7
7 ≥ 11 15 8

≥ 8 10 14 6

Table 1. The possible values of ν2(c4), ν2(c6), ν2(∆E) and ν2(N).

ν3(c4) ν3(c6) ν3(∆E) ν3(N)
0 0 ≥ 0 min{1, ν3(∆E)}
1 ≥ 3 0 0

≥ 2 3 3 2 or 3
2 4 3 3
2 ≥ 5 3 2
2 3 4 4
2 3 5 3
2 3 ≥ 6 2

≥ 3 4 5 5
3 5 6 4

ν3(c4) ν3(c6) ν3(∆E) ν3(N)
3 ≥ 6 6 2

≥ 4 5 7 5
≥ 4 6 9 2 or 3

4 7 9 3
4 ≥ 8 9 2
4 6 10 4
4 6 11 3

≥ 5 7 11 5
5 8 12 4

≥ 6 8 13 5

Table 2. The possible values of ν3(c4), ν3(c6), ν3(∆E) and ν3(N).

νp(c4) νp(c6) νp(∆E) νp(N)
0 0 ≥ 1 1

≥ 1 1 2 2
1 ≥ 2 3 2

≥ 2 2 4 2
≥ 2 ≥ 3 6 2

νp(c4) νp(c6) νp(∆E) νp(N)
2 3 ≥ 7 2

≥ 3 4 8 2
3 ≥ 5 9 2

≥ 4 5 10 2

Table 3. The possible values of νp(c4), νp(c6), νp(∆E) and νp(N) when p > 3
is prime and p | ∆E.

3. Cubic forms : the main theorem and algorithm

Having introduced the notation we require for elliptic curves, we now turn our attention
to cubic forms and our main result. Fix integers a, b, c and d, and consider the binary cubic

4



form

F (x, y) = ax3 + bx2y + cxy2 + dy3, (3)

with discriminant

DF = −27a2d2 + b2c2 + 18abcd− 4ac3 − 4b3d. (4)

To any such form, we can associate a pair of covariants, the Hessian H = HF :

H = HF (x, y) = −1

4

(
∂2F

∂x2
∂2F

∂y2
−
(
∂2F

∂x∂y

)2
)

and the Jacobian determinant of F and H, a cubic form G = GF defined by

G = GF (x, y) =
∂F

∂x

∂H

∂y
− ∂F

∂y

∂H

∂x
.

A quick computation reveals that, explicitly,

H = (b2 − 3ac)x2 + (bc− 9ad)xy + (c2 − 3bd)y2

and

G = (−27a2d+ 9abc− 2b3)x3 + (−3b2c− 27abd+ 18ac2)x2y

+(3bc2 − 18b2d+ 27acd)xy2 + (−9bcd+ 2c3 + 27ad2)y3.

These satisfy the syzygy

4H(x, y)3 = G(x, y)2 + 27DFF (x, y)2 (5)

as well as the resultant identities:

Res(F,G) = −8D3
F and Res(F,H) = D2

F . (6)

Note here that we could just as readily work with −G instead of G here (corresponding to
taking the Jacobian determinant of H and F , rather than of F and H). Indeed, as we shall
observe in Section 5.4, for our applications we will, in some sense, need to consider both
possibilities.

Notice that if we set (x, y) = (1, 0) and multiply through by D6/4 (for any rational D),
then this syzygy can be rewritten as

(D2H(1, 0))3 −
(
D3

2
G(1, 0)

)2

= 1728 · D
6DF

256
F (1, 0)2.

Given an elliptic curve with corresponding invariants c4, c6 and ∆E, we will show that it is
always possible to construct a binary cubic form F , with corresponding D for which

D2H(1, 0) = c4, −
1

2
D3G(1, 0) = c6 and ∆E =

D6DFF (1, 0)2

256

(and hence equation (2) is satisfied). This is the basis of the proof of our main result, which
provides an algorithm for computing all isomorphism classes of elliptic curves E/Q with
conductor a fixed positive integer N . Though we state our result for curves with jE 6= 0, the
case jE = 0 is easy to treat separately (see Section 3.1.7).
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Theorem 1. Let E/Q be an elliptic curve of conductor N = 2α3βN0, where N0 is coprime
to 6 and 0 ≤ α ≤ 8, 0 ≤ β ≤ 5. Suppose further that jE 6= 0. Then there exists an integral
binary cubic form F of discriminant

DF = sign(∆E)2α03β0N1,

and relatively prime integers u and v with

F (u, v) = ω0u
3 + ω1u

2v + ω2uv
2 + ω3v

3 = 2α1 · 3β1 ·
∏
p|N0

pκp , (7)

such that E is isomorphic over Q to ED, where

ED : 3[β0/3]y2 = x3 − 27D2HF (u, v)x+ 27D3GF (u, v) (8)

and, for [r] the greatest integer not exceeding a real number r,

D =
∏

p|gcd(c4(E),c6(E))

pmin{[νp(c4(E))/2],[νp(c6(E))/3]}. (9)

The α0, α1, β0, β1 and N1 are nonnegative integers satisfying N1 | N0,

(α0, α1) =



(2, 0) or (2, 3) if α = 0,

(3,≥ 3) or (2,≥ 4) if α = 1,

(2, 1), (4, 0) or (4, 1) if α = 2,

(2, 1), (2, 2), (3, 2), (4, 0) or (4, 1) if α = 3,

(2,≥ 0), (3,≥ 2), (4, 0) or (4, 1) if α = 4,

(2, 0) or (3, 1) if α = 5,

(2,≥ 0), (3,≥ 1), (4, 0) or (4, 1) if α = 6,

(3, 0) or (4, 0) if α = 7,

(3, 1) if α = 8

and

(β0, β1) =


(0, 0) if β = 0,

(0,≥ 1) or (1,≥ 0) if β = 1,

(3, 0), (0,≥ 0) or (1,≥ 0) if β = 2,

(β, 0) or (β, 1) if β ≥ 3.

The κp are nonnegative integers with

νp(∆E) =

{
νp(DF ) + 2κp if p - D,
νp(DF ) + 2κp + 6 if p | D (10)

and

κp ∈ {0, 1} whenever p2 | N1. (11)

Further, we have

if β0 ≥ 3, then 3 | ω1 and 3 | ω2, (12)

and

if νp(N) = 1, for p ≥ 3, then p | DFF (u, v). (13)
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Here, as we shall make explicit in the next subsection, the form F corresponding to the
curve E in Theorem 1 determines the 2-division field of E. This connection was noted by
Rubin and Silverberg [56] in a somewhat different context – they proved that if K is a field
of characteristic 6= 2, 3, F (u, v) is a binary cubic form defined over K, E is an elliptic curve
defined by y2 = F (x, 1), and E0 is another elliptic curve over K with the property that
E[2] ∼= E0[2] (as Galois modules), then E0 is isomorphic to the curve

y2 = x3 − 3HF (u, v)x+GF (u, v),

for some u, v ∈ K. We thank the referee for bringing this paper to our attention.

3.1. Remarks. Before we proceed, there are a number of observations we should make
regarding Theorem 1.

3.1.1. Historical comments. Theorem 1 is based upon a generalization of classical work of
Mordell [45] (see also Theorem 3 of Chapter 24 of Mordell [47]), in which the Diophantine
equation

X2 + kY 2 = Z3

is treated through reduction to binary cubic forms and their covariants, under the assumption
that X and Z are coprime. That this last restriction can, with some care, be eliminated,
was noted by Sprindzuk (see Chapter VI of [63]). A similar approach to this problem can
be made through the invariant theory of binary quartic forms, where one is led to solve,
instead, equations of the shape

X2 + kY 3 = Z3.

We will not carry out the analogous analysis here.

3.1.2. 2-division fields and reducible forms. It might happen that the form F whose existence
is guaranteed by Theorem 1 is reducible over Z[x, y]. This occurs precisely when the elliptic
curve E has a nontrivial rational 2-torsion point. This follows from the more general fact
that the cubic form F (u, v) = ω0u

3 +ω1u
2v+ω2uv

2 +ω3v
3 corresponding to an elliptic curve

E has the property that the splitting field of F (u, 1) is isomorphic to the 2-division field of
E. This is almost immediate from the identity

33 ω2
0 F
(
x−ω1

3ω0
, 1
)

= x3 + (9ω0ω2 − 3ω2
1)x+ 27ω2

0ω3 − 9ω0ω1ω2 + 2ω3
1

= x3 − 3HF (1, 0)x+GF (1, 0).

Indeed, from (8), the elliptic curve defined by the equation y2 = x3 − 3HF (1, 0)x+GF (1, 0)
is a quadratic twist of that given by the model y2 = x3 − 27c4(E)x − 54c6(E), and hence
also of E (whereby they have the same 2-division field).

3.1.3. Imprimitive forms. It is also the case that the cubic forms arising need not be primitive
(in the sense that gcd(ω0, ω1, ω2, ω3) = 1). This situation can occur if each of the coefficients
of F is divisible by some integer g ∈ {2, 3, 6}. Since the discriminant is a quartic form in the
coefficients of F , for this to take place one requires that

DF ≡ 0 (mod g4).
7



This is a necessary but not sufficient condition for the form F to be imprimitive. It follows,
if we wish to restrict attention to primitive forms in Theorem 1, that the possible values for
νp(DF ) that can arise are

ν2(DF ) ∈ {0, 2, 3, 4}, ν3(DF ) ∈ {0, 1, 3, 4, 5} and νp(DF ) ∈ {0, 1, 2}, for p > 3. (14)

3.1.4. Possible twists. We note that necessarily

D | 23 · 32 ·
∏
p|N0

p, (15)

so that, given N , there is a finite set of ED to consider (we can restrict our attention to
quadratic twists of the curve defined via y2 = x3 − 3HF (1, 0)x + GF (1, 0), by squarefree
divisors of 6N). In case we are dealing with squarefree conductor N (i.e. for semistable
curves E), then, from Tables 1, 2 and 3, it follows that D ∈ {1, 2}.

3.1.5. Necessity, but not sufficiency. If we search for elliptic curves of conductor N , say,
there may exist a cubic form F for which the corresponding Thue-Mahler equation (7)
has a solution, where all of the conditions of Theorem 1 are satisfied, but for which the
corresponding ED has conductor NED 6= N for all possible D. This can happen when certain
local conditions at primes dividing 6N are not met; these local conditions are, in practice,
easy to check and only a minor issue when performing computations. Indeed, when producing
tables of elliptic curves of conductor up to some given bound, we will, in many cases, apply
Theorem 1 to find all curves with good reduction outside a fixed set of primes – in effect,
working with multiple conductors simultaneously. For such a computation, the conductor of
every twist ED we encounter will be of interest to us.

3.1.6. Special binary cubic forms. If, for a given binary form F (x, y) = ax3+bx2y+cxy2+dy3,
3 divides both the coefficients b and c (say b = 3b0 and c = 3c0), then 27 | DF and,

consequently, we can write DF = 27D̃F , where

D̃F = −a2d2 + 6ab0c0d+ 3b20c
2
0 − 4ac30 − 4b30d.

One can show that the set of binary cubic forms with b ≡ c ≡ 0 (mod 3) is closed within the
larger set of all binary cubic forms in Z[x, y], under the action of either SL2(Z) or GL2(Z).
Also note that for such forms we have

H̃F (x, y) =
HF (x, y)

9
= (b20 − ac0)x2 + (b0c0 − ad)xy + (c20 − b0d)y2

and G̃F (x, y) = GF (x, y)/27, so that

G̃F (x, y) = (−a2d+ 3ab0c0 − 2b30)x
3 + 3(−b20c0 − ab0d+ 2ac20)x

2y

+3(b0c
2
0 − 2b20d+ ac0d)xy2 + (−3b0c0d+ 2c30 + ad2)y3.

The syzygy now becomes

4H̃F (x, y)3 = G̃F (x, y)2 + D̃FF (x, y)2. (16)

We note, from Theorem 1, that we will be working exclusively with forms of this shape
whenever we wish to treat elliptic curves of conductor N ≡ 0 (mod 33).
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3.1.7. The case jE = 0. This case is treated over a general number field in Proposition 4.1 of
Cremona and Lingham [19]. The elliptic curves E/Q with jE = 0 and a given conductor N
are particularly easy to determine, since a curve with this property is necessarily isomorphic
over Q to a Mordell curve with a model of the shape Y 2 = X3−54c6 where c6 = c6(E). Such
a model is minimal except possibly at 2 and 3 and has discriminant −26 · 39 · c26 (whereby
any primes p > 2 which divide c6 necessarily also divide N). Here, without loss of generality,
we may suppose that c6 is sixth-power-free. Further, from Tables 1, 2, and 3, we have that
ν2(N) ∈ {0, 2, 3, 4, 6}, that ν3(N) ∈ {2, 3, 5}, and that νp(N) = 2 whenever p | N for p > 3.
Given a positive integer N satisfying these constraints, it is therefore a simple matter to check
to see if there are elliptic curves E/Q with conductor N and j-invariant 0. One needs only
to compute the conductors of the curves given by Y 2 = X3 − 54c6 for each sixth-power-free
integer (positive or negative) c6 dividing 64N3.

3.2. The algorithm. It is straightforward to convert Theorem 1 into an algorithm for
finding all E/Q of conductor N . We can proceed as follows.

(1) Begin by finding all E/Q of conductor N with jE = 0, as outlined in Section 3.1.7.
(2) Next, compute GL2(Z)-representatives for every binary form F with discriminant

∆F = ±2α03β0N1

for each divisor N1 of N0, and each possible pair (α0, β0) given in the statement of
Theorem 1 (see (14) for specifics). We describe an algorithm for listing these forms
in Section 5.

(3) Solve the corresponding Thue-Mahler equations, finding pairs of integers (u, v) such
that F (u, v) is an S-unit, where S = {p prime : p | N} ∪ {2} and F (u, v) satisfies
the additional conditions given in the statement of Theorem 1.

(4) For each cubic form F and pair of integers (u, v), consider the elliptic curve

E1 : y2 = x3 − 27HF (u, v)x+ 27GF (u, v)

and all its quadratic twists by squarefree divisors of 6N . Output those curves with
conductor N (if any).

The first, second and fourth steps here are straightforward; the first and second can be done
efficiently, while the fourth is essentially trivial. The main bottleneck is step (3). While there
is a deterministic procedure for carrying this out (see Tzanakis and de Weger [69], [70]), it is
both involved and, often, computationally taxing. An earlier implementation of this method
in Magma due to Hambrook [31] has subsequently been refined by the second author [28];
the most up-to-date version of this code (which we will reference here and henceforth as
UBC-TM) is available at

http://www.nt.math.ubc.ca/BeGhRe/Code/UBC-TMCode

We give a number of examples of this general procedure in Section 6. In Section 7, we
show that in the special cases where the conductor is prime or the square of a prime, the
Thue-Mahler equations (7) (happily) reduce to Thue equations (i.e. the exponents on the
right hand side of (7) are absolutely bounded). This situation occurs because, for such
elliptic curves, a very strong form of Szpiro’s conjecture (bounding the minimal discriminant
of an elliptic curve from above in terms of its conductor) is known to hold. Thue equations
can be solved by routines that are computationally much easier than is currently the case
for Thue-Mahler equations; such procedures have been implemented in Pari/GP [51] and
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Magma [9]. Further, in this situation, it is possible to apply a much more computationally
efficient argument to find all such elliptic curves heuristically but not, perhaps, completely
(see Section 8).

4. Proof of Theorem 1

Proof. Given an elliptic curve E/Q of conductor N = 2α3βN0 and invariants c4 = c4(E) 6= 0
and c6 = c6(E), we will construct a corresponding cubic form F explicitly. In fact, our form
F will have the property that its leading coefficient will be supported on the primes dividing
6N , i.e. that

F (1, 0) = 2α1 · 3β1 ·
∏
p|N0

pκp .

Define D as in (9), i.e. take D to be the largest integer whose square divides c4 and whose
cube divides c6. We then set

X = c4/D2 and Y = c6/D3,

whereby, from (2),

Y 2 = X3 + (−1)δ+1M, (17)

for

M = D−6 · 26 · 33 · |∆E|.

Note that the assumption that c4(E) 6= 0 ensures that both the j-invariant jE 6= 0 and that
X 6= 0.

It will prove useful to us later to understand precisely the possible common factors among
X, Y,D and M . For any p > 3, we have νp(N) ≤ 2. When νp(N) = 1, from Table 3 we find
that

(νp(D), νp(X), νp(Y ), νp(M)) = (0, 0, 0,≥ 1), (18)

while, if νp(N) = 2, then either

νp(D) = 1 and min{νp(X), νp(Y )} = 0, νp(M) = 0, (19)

or

νp(D) ≤ 1, (νp(X), νp(Y ), νp(M)) = (0, 0,≥ 1), (≥ 1, 1, 2), (1,≥ 2, 3) or (≥ 2, 2, 4). (20)

Things are rather more complicated for the primes 2 and 3; we summarize this in Tables 4
and 5 (which are, in turn, compiled from the data in Tables 1 and 2).
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ν2(N) (ν2(X), ν2(Y ), ν2(M), ν2(D))
0 (≥ 2, 0, 0, 1) or (0, 0, 6, 0)
1 (0, 0,≥ 7, 0)
2 (≥ 2, 2, 4, 1), (≥ 2, 1, 2, 2) or (0, 0, 2, 2)
3 (≥ 2, 2, 4, 1), (≥ 2, 1, 2, 2) or (0, 0, t, 2), t = 2, 4 or 5
4 (≥ 2, 2, 4, 1), (≥ 2, 1, 2, 2), (≥ 2, 0, 0, 3) or (0, 0, t, 2), t = 2 or t ≥ 4
5 (≥ 0,≥ 0, 0, 2), (0,≥ 0, 0, 3), (0, 0, 3, 2) or (1, 0, 0, 3)
6 (≥ 0,≥ 0, 0, 2), (0,≥ 0, 0, 3), (≥ 2, 2, 4, 2), (≥ 2, 1, 2, 3) or (0, 0,≥ 2, 3)
7 (0, 0, 1, 2), (0, 0, 1, 3), (1, 1, 2, 2) or (1, 1, 2, 3)
8 (1,≥ 2, 3, 2) or (1,≥ 2, 3, 3).

Table 4. The possible values of ν2(N), ν2(X), ν2(Y ), ν2(M) and ν2(D)

ν3(N) (ν3(X), ν3(Y ), ν3(M), ν3(D))
0 (1,≥ 3, 3, 0) or (0, 0, 3, 0)
1 (0, 0,≥ 4, 0)
2 (≥ 0, 0, 0, 1), (0,≥ 2, 0, 1), (0, 0,≥ 3, 1), (1,≥ 3, 3, 1), (≥ 0, 0, 0, 2) or (0,≥ 2, 0, 2)
3 (≥ 0, 0, 0, 1), (≥ 0, 0, 0, 2), (0, 1, 0, 1), (0, 1, 0, 2), (0, 0, 2, 1) or (0, 0, 2, 2)
4 (0, 0, 1, 1), (0, 0, 1, 2), (1, 2, 3, 1) or (1, 2, 3, 2)
5 (≥ 1, 1, 2, 1), (≥ 1, 1, 2, 2), (≥ 2, 2, 4, 1) or (≥ 2, 2, 4, 2).

Table 5. The possible values of ν3(N), ν3(X), ν3(Y ), ν3(M) and ν3(D)

We will construct a cubic form

F1(x, y) = ax3 + 3b0x
2y + 3c0xy

2 + dy3,

one coefficient at a time; our main challenge will be to ensure that the a, b0, c0 and d we
produce are actually integral rather than just rational. The form F whose existence is
asserted in the statement of Theorem 1 will turn out to be either F1 or F1/3.

Let us write

M = M1 ·M2

where M2 is the largest integer divisor of M that is coprime to X, so that

M1 =
∏
p |X

pνp(M) and M2 =
∏
p -X

pνp(M).

We define

a1 =
∏
p|M1

p

[
νp(M)−1

2

]
(21)

and set

a2 =

 3−1
∏

p|M2
p

[
νp(M)

2

]
if ν3(X) = 0, ν3(M) = 2t, t ∈ Z, t ≥ 2,∏

p|M2
p

[
νp(M)

2

]
otherwise.

(22)
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Define a = a1 · a2. It follows that a21 | M1 and, from (18), (19), (20), and Tables 4 and 5,
that both

a1 | X and a21 | Y.
We write X = a1 · X1 and observe that a22 | M2. Note that a2 is coprime to X and hence
to a1. Since a2 | M , we may thus define a positive integer K via K = M/a2, so that (17)
becomes

Y 2 −X3 = (−1)δ+1Ka2.

From the fact that gcd(a2, X) = 1 and X 6= 0, we may choose B so that

a2B ≡ −Y/a1 (mod X3),

whereby
aB + Y ≡ 0 (mod a1X

3). (23)

Note that, since a21 | Y and a1 | X, it follows that a1 | B. Let us define

b0 =
aB + Y

X
, c0 =

b20 −X
a

and d =
b0c0 − 2B

a
. (24)

We now demonstrate that these are all integers. That b0 ∈ Z is immediate from (23). Since
b0X − Y = aB, we know that b0X ≡ Y (mod a). Squaring both sides thus gives

b20X
2 ≡ Y 2 ≡ X3 + (−1)δ+1Ka2 ≡ X3 (mod a1 · a2),

and, since gcd(a2, X) = 1,
b20 ≡ X (mod a2).

From (23), we have b0 ≡ 0 (mod a1X
2), whereby, since a1 | X,

b20 ≡ X ≡ 0 (mod a1).

The fact that gcd(a1, a2) = 1 thus allows us to conclude that b20 ≡ X (mod a) and hence
that c0 ∈ Z.

It remains to show that d is an integer. Let us rewrite ad as

ad = b0c0 − 2B =

(
aB + Y

aX

)((
aB + Y

X

)2

−X

)
− 2B,

so that

ad =

(
aB + Y

aX

)(
(−1)δ+1Ka2 + 2aBY + a2B2

X2

)
− 2B.

Expanding, we find that

X3d = (−1)δ+1KY + 3Y B2 + aB3 + (−1)δ+13KaB. (25)

We wish to show that

(−1)δ+1KY + 3Y B2 + aB3 + (−1)δ+13KaB ≡ 0 (mod X3).

From (23), we have that

(−1)δ+1KY + 3Y B2 + aB3 + (−1)δ+13KaB ≡ 2Y
(
B2 + (−1)δK

)
(mod a1X

3).

Multiplying congruence (23) by aB−Y (which, from our prior discussion, is divisible by a21),
we find that

a2B2 ≡ Y 2 ≡ X3 + (−1)δ+1Ka2 (mod a31X
3)

12



and hence, dividing through by a21,

a22B
2 ≡ a1X

3
1 + (−1)δ+1Ka22 (mod a1X

3).

It follows that
B2 + (−1)δK ≡ a−22 a1X

3
1 (mod a1X

3), (26)

and so, since a21 | Y ,
Y
(
B2 + (−1)δK

)
≡ 0 (mod X3),

whence we conclude that d is an integer, as desired.
With these values of a, b0, c0 and d, we can then confirm (with a quick computation) that

the cubic form

F1(x, y) = ax3 + 3b0x
2y + 3c0xy

2 + dy3

has discriminant

DF1 =
108

a2
(X3 − Y 2) = (−1)δ · 22 · 33 ·K

We also note that
F1(1, 0) = a, H̃F1(1, 0) = b20 − ac0 = X

and

−1

2
G̃F1(1, 0) =

1

2
(a2d− 3ab0c0 + 2b30) = Y,

where G̃F and H̃F are as in Section 3.1.6.
Summarizing Table 5, we find that we are in one of the following four cases :

(i) ν3(X) = 1, ν3(Y ) = 2, ν3(M) = 3 and ν3(N) = 4,
(ii) ν3(X) ≥ 2, ν3(Y ) = 2, ν3(M) = 4, ν3(N) = 5,

(iii) ν3(M) ≤ 2 and ν3(N) ≥ 2, or
(iv) ν3(M) ≥ 3 and either ν3(XY ) = 0 or ν3(X) = 1, ν3(Y ) ≥ 3.

In cases (i), (ii), and (iii), we choose F = F1, i.e.

(ω0, ω1, ω2, ω3) = (a, 3b0, 3c0, d),

so that

F (1, 0) = a, DF = (−1)δ22 · 33 ·K, c4 = D2H̃F (1, 0) and c6 = −1

2
D3G̃F (1, 0).

It follows that E is isomorphic over Q to the curve

y2 = x3 − 27c4x− 54c6 = x3 − 3D2HF (1, 0)x+D3GF (1, 0).

In case (iv), observe that, from definitions (21) and (22),

ν3(a) =

[
ν3(M)− 1

2

]
and ν3(K) = ν3(M)− 2ν3(a), (27)

so that 3 | a and 3 | K. From equation (25), 3 | X3d. If ν3(X) = 0 this implies that 3 | d.
On the other hand, if ν3(X) = 1, then, from (26), we may conclude that 3 | B. Since each
of a,B and K is divisible by 3, while ν3(X) = 1 and ν3(Y ) ≥ 3, equation (25) once again
implies that 3 | d. In this case, we can therefore write a = 3a0 and d = 3d0, for integers a0
and d0 and set F = F1/3, i.e. take

(ω0, ω1, ω2, ω3) = (a0, b0, c0, d0).

13



We have

F (1, 0) = a/3, DF = (−1)δ22 ·K/3, c4 = D2HF (1, 0) and c6 = −1

2
D3GF (1, 0).

The curve E is now isomorphic over Q to the model

y2 = x3 − 27c4x− 54c6 = x3 − 27D2HF (1, 0)x+ 27D3GF (1, 0).

Since |DF |/DF = (−1)δ and a2K | 1728∆E, we may write

F (1, 0) = 2α1 · 3β1 ·
∏
p|N0

pκp and DF = (|∆E|/∆E)2α03β0N1,

for nonnegative integers α0, α1, β0, β1, κp and a positive integer N1, divisible only by primes
dividing N0. More explicitly, we have

α0 = ν2(K) + 2 and β0 = ν3(K) +

{
3 in case (i), (ii) or (iii), or
−1 in case (iv),

and

α1 = ν2(a) and β1 = ν3(a) +

{
0 in case (i), (ii) or (iii), or
−1 in case (iv).

It remains for us to prove that these integers satisfy the conditions listed in the statement
of the theorem. It is straightforward to check this, considering in turn each possible triple
(X, Y,M) from (18), (19), (20), and Tables 4 and 5, and using the fact that K = M/a2.

In particular, if p > 3, we have νp(∆E) = 6νp(D) + νp(DF ) + 2κp. From Table 3 and (9),
we have νp(D) ≤ 1, whereby (10) follows. Further,

νp(a) =


[
νp(M)−1

2

]
if p | X,[

νp(M)

2

]
if p - X,

(28)

and so, if p - X,

νp(M)− 2νp(a) ≤ 1.

Since a2K = M , if p2 | DF , then νp(N) = 2 and it follows that we are in case (20), with
p | X. We may thus conclude that νp(M) ∈ {2, 3, 4} and hence, from (28), that νp(a) ≤ 1.
This proves (11).

For (12), note that, in cases (i), (ii) and (iii), we clearly have that 3 | ω1 and 3 | ω2. In
case (iv), from (27),

β0 = ν3(DF ) = ν3(K)− 1 = ν3(M)− 2

[
ν3(M)− 1

2

]
− 1 ∈ {0, 1}.

Finally, to see (13), note that if νp(N) = 1, for p > 3, then we have (18) and hence

νp(DF ) + 2νp(F (u, v)) = νp(M) ≥ 1,

whereby p | DF or p | F (u, v). We may also readily check that the same conclusion obtains
for p = 3 (since, equivalently, β0 + β1 ≥ 1). This completes the proof of Theorem 1.

�
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To illustrate this argument, suppose we consider the elliptic curve (denoted 109a1 in
Cremona’s database) defined via

E : y2 + xy = x3 − x2 − 8x− 7,

with ∆E = −109. We have

c4(E) = 393 and c6(E) = 7803,

so that gcd(c4(E), c6(E)) = 3. It follows that

D = 1, X = 393, Y = 7803, δ = 1, M = 26 · 33 · 109,

and hence we have

M1 = 33, M2 = 26 · 109, a1 = 3, a2 = 23, a = 23 · 3 and K = 3 · 109.

We solve the congruence 8B ≡ −2601 (mod 3933) to find that we may choose B = 7586982,
so that

b0 = 463347, c0 = 8945435084 and d = 172701687278841.

We are in case (iv) and thus set

F (x, y) = 8x3 + 463347x2y + 8945435084xy2 + 57567229092947y3,

with discriminant DF = −4 · 109,

GF (1, 0) = −15606 = −2c6(E) and HF (1, 0) = 393 = c4(E).

The curve E is thus isomorphic to the model

ED : y2 = x3 − 27D2HF (1, 0)x+ 27D3GF (1, 0) = x3 − 10611x− 421362. (29)

We observe that the form F is GL2(Z)-equivalent to a “reduced” form (see Section 5 for
details), given by

F̃ (x, y) = x3 + 3x2y + 4xy2 + 6y3.

In fact, this is the only form (up to GL2(Z)-equivalence) of discriminant ±4 · 109. We can
check that the solutions to the Thue equation F̃ (u, v) = 8 are given by (u, v) = (2, 0) and
(u, v) = (−7, 3). The minimal quadratic twist of

y2 = x3 − 27HF̃ (2, 0)x+ 27GF̃ (2, 0)

has conductor 25 · 109 and hence cannot correspond to E. For the solution (u, v) = (−7, 3),
we find that the curve given by the model

y2 = x3 − 27HF̃ (−7, 3)x+ 27GF̃ (−7, 3) = x3 − 10611x+ 421362,

is the quadratic twist by −1 of the curve (29). This situation arises from the fact that GF is
an SL2(Z)-covariant, but not a GL2(Z)-covariant of F (we will discuss this more in the next
section).
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5. Finding representative forms

As Theorem 1 illustrates, we are able to tabulate elliptic curves over Q with good reduction
outside a given set of primes, by finding a set of representatives for GL2(Z)-equivalence
classes of binary cubic forms with certain discriminants, and then solving a number of Thue-
Mahler equations. In this section, we will provide a brief description of techniques to find
distinguished reduced representatives for equivalence classes of cubic forms over a given range
of discriminants. For both positive and negative discriminants, the notion of reduction arises
from associating a particular definite quadratic form to a given cubic form.

5.1. Irreducible Forms. For forms of positive discriminant, there is a well developed clas-
sical theory of reduction dating back to work of Hermite [33], [34] and, later, Davenport
(see e.g. [20], [21] and [23]). We can actually apply this method to both reducible and
irreducible forms. Initially, though, we will assume the forms are irreducible, since we will
treat the elliptic curves corresponding to reducible forms by a somewhat different approach
(see Section 5.2). Note that when one speaks of “irreducible, reduced forms”, as Davenport
observes, “the terminology is unfortunate, but can hardly be avoided” ([22], page 184).

In each of Belabas [3], Belabas and Cohen [4] and Cremona [17], we find very efficient
algorithms for computing cubic forms of both positive and negative discriminant, refining
classical work of Hermite, Berwick and Mathews [7], and Julia [35]. These are readily
translated into computer code to loop over valid (a, b, c, d)-values (with corresponding forms
ax3 + bx2y + cxy2 + dy3). The running time in each case is linear in the upper bound X.
Realistically, this step (finding representatives for our cubic forms) is highly unlikely to be
the bottleneck in our computations.

5.2. Reducible forms. One can make similar definitions of reduction for reducible forms
(see [5] for example). However, for our purposes, it is sufficient to note that a reducible form
is equivalent to

F (x, y) = bx2y + cxy2 + dy3 with 0 ≤ d ≤ c,

which has discriminant

∆F = b2(c2 − 4bd).

To find all elliptic curves with good reduction outside S = {p1, p2, . . . , pk}, corresponding
to reducible cubics in Theorem 1 (i.e. those E with at least one rational 2-torsion point), it
is enough to find all such triples (b, c, d) for which there exist integers x and y so that both

b2(c2 − 4bd) and bx2y + cxy2 + dy3

are S∗-units (with S∗ = S∪{2}). For this to be true, it is necessary that each of the integers

b, c2 − 4bd, y and µ = bx2 + cxy + dy2

is an S∗-unit. Taking the discriminant of µ as a function of x, we thus require that

(c2 − 4bd)y2 + 4bµ = Z2, (30)

for some integer Z. This is an equation of the shape

X + Y = Z2 (31)

in S∗-units X and Y .
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An algorithm for solving such equations is described in detail in Chapter 7 of de Weger
[72] (see also [73]); it relies on bounds for linear forms in p-adic and complex logarithms and
various reduction techniques from Diophantine approximation. An implementation of this
is available at

http://www.nt.math.ubc.ca/BeGhRe/Code/UBC-TMCode.

While a priori equation (31) arises as only a necessary condition for the existence of an
elliptic curve of the desired form, given any solution to (31) in S∗-units X and Y and integer
Z, the curves

E1(X, Y ) : y2 = x3 + Zx2 +
X

4
x

and

E2(X, Y ) : y2 = x3 + Zx2 +
Y

4
x

have nontrivial rational 2-torsion (i.e. the point corresponding to (x, y) = (0, 0)) and dis-
criminant X2Y and XY 2, respectively (and hence good reduction at all primes outside S∗).

Though a detailed analysis of running times for solving equations of the shape (31), or for
solving more general cubic Thue-Mahler equations, has not to our knowledge been carried
out, our experience from carrying out such computations for several thousand sets S is that,
typically, the former can be done significantly faster than the latter. By way of example,
solving (31) for S = {2, 3, 5, 7, 11} takes only a few hours on a laptop, while treating the
analogous problem of determining all elliptic curves over Q with trivial rational 2-torsion
and good reduction outside S (see Section 6.4) requires many thousand machine-hours.

5.3. Computing forms of fixed discriminant. For our purposes, we will typically com-
pute and tabulate a large list of irreducible forms of absolute discriminant bounded by a
given positive number X (of size up to 1012 of so, beyond which storage becomes problem-
atical). In certain situations, however, we will want to compute all forms of a given fixed,
larger discriminant (perhaps up to size 1015). To carry this out and find desired forms of the
shape ax3 + bx2y + cxy2 + dy3, we can argue as in, for example, Cremona [17], to restrict
our attention to O(X3/4) triples (a, b, c). From (4), the definition of DF , we have that

d =
9abc− 2b3 ±

√
4(b2 − 3ac)3 − 27a2DF

27a2

and hence it remains to check that the quantity 4(b2−3ac)3−27a2DF is an integer square, that
the relevant conditions modulo 27a2 are satisfied, and that a variety of further inequalities
from [17] are satisfied. The running time for finding forms with discriminants of absolute
value of size X via this approach is of order X3/4.

5.4. GL2(Z) vs SL2(Z). One last observation which is very important to make before we
proceed, is that while G2

F is GL2(Z)-covariant, the same is not actually true for GF (it is,
however, an SL2(Z)-covariant). This may seem like a subtle point, but what it means for
us in practice is that, having found our GL2(Z)-representative forms F and corresponding
curves of the shape ED from Theorem 1, we need, in every case, to also check to see if

ẼD : 3[β0/3]y2 = x3 − 27D2HF (u, v)x− 27D3GF (u, v),

the quadratic twist of ED by −1, yields a curve of the desired conductor.
17
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6. Examples

In this section, we will describe a few applications of Theorem 1 to computing all elliptic
curves of a fixed conductor N , or all curves with good reduction outside a given set of
primes S. We restrict our attention to examples with composite conductors, since the case
of conductors p and p2, for p prime, will be treated at length in Section 7 (and subsequently).
For the examples in Sections 6.1, 6.2.1, 6.2.2 and 6.2.3, since the conductors under discussion
are not “square-full”, there are necessarily no curves E encountered with jE = 0.

In our computations in this section, we executed all jobs in parallel via the shell tool [66].
We note that our Magma code lends itself easily to parallelization, and we made full use of
this fact throughout.

We carried out a one-time computation of all irreducible cubic forms that can arise in
Theorem 1, of absolute discriminant bounded by 1010. This computation took slightly more
than 3 hours on a cluster of 40 cores; roughly half this time was taken up with sorting and
organizing output files. There are 996198693 classes of irreducible cubic forms of positive
discriminant and 3079102475 of negative discriminant in the range in question; storing them
requires roughly 120 gigabytes. We could also have tabulated and stored representatives for
each class of reducible form of absolute discriminant up to 1010, but chose not to since our
approach to solving equation (31) does not require them.

6.1. Cases without irreducible forms. We begin by noting an obvious corollary to The-
orem 1 that, in many cases, makes it a relatively routine matter to determine all elliptic
curves of a given conductor, provided we can show the nonexistence of certain corresponding
cubic forms.

Corollary 2. Let N be a square-free positive integer with gcd(N, 6) = 1 and suppose that
there do not exist irreducible binary cubic forms in Z[x, y] of discriminant ±4N1, for each
positive integer N1 | N . Then every elliptic curve over Q of conductor N1, for each N1 | N ,
has nontrivial rational 2-torsion.

We will apply this result to a pair of examples (chosen somewhat arbitrarily). Currently,
such an approach is feasible for forms of absolute discriminant (and hence potentially con-
ductors) up to roughly 1015. We observe that, among the positive integers N < 108 satisfying

ν2(N) ≤ 8, ν3(N) ≤ 5 and νp(N) ≤ 2 for p > 3,

i.e. those for which there might actually exist elliptic curves E/Q of conductor N , we find
that 708639 satisfy the hypotheses of Corollary 2.

It is somewhat harder to modify the statement of Corollary 2 to include reducible forms
(with corresponding elliptic curves having nontrivial rational 2-torsion). One of the difficul-
ties one encounters is that there actually do exist reducible forms of, by way of example,
discriminant 4p for every p ≡ 1 (mod 8); writing p = 8k + 1, for instance, the form

F (x, y) = 2x2y + xy2 − ky3

has this property.

6.1.1. Conductor 2655632887 = 31 · 9007 · 9511. In the notation of Theorem 1, we have
α = β = 0 and hence α0 = 2 and β0 = 0, so that, in order for there to be an elliptic curve with
trivial rational 2-torsion and this conductor, we require the existence of an irreducible cubic
form of discriminant 4N1 where N1 | 31 ·9007 ·9511, i.e. discriminant ±4 ·31δ1 ·9007δ2 ·9511δ3 ,
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for δi ∈ {0, 1}. We check that there are no such forms, directly from our table of forms,
except for the possibility of DF = ±4 · 31 · 9007 · 9511, which exceeds 1010 in absolute value.
For these latter possibilities, we argue as in Section 5.3 to show that no such forms exist.
We may thus appeal to Corollary 2.

For the possible cases with rational 2-torsion, we solve X + Y = Z2 with X and Y S-
units for S = {2, 31, 9007, 9511}. The solutions to this equation with X ≥ Y , Z > 0 and
gcd(X, Y ) squarefree are precisely those with

(X, Y ) = (2,−1), (2, 2), (8, 1), (32,−31), (62, 2), (256,−31), (961, 128),
(992,−31), (3968, 1), (76088,−9007), (294841, 8) and (492032,−9007).

A short calculation confirms that each elliptic curve arising from these solutions via qua-
dratic twist has bad reduction at the prime 2 (and, in particular, cannot have conductor
2655632887). There are thus no elliptic curves over Q with conductor 2655632887. Observe
that these calculations in fact ensure that there do not exist elliptic curves over Q with
conductor dividing 2655632887.

Full computational details are available at

http://www.nt.math.ubc.ca/BeGhRe/Examples/2655632887-data.

We should observe that it is much more challenging computationally to try to extend this
argument to tabulate curves E with good reduction outside S = {31, 9007, 9511}. To do
this, we would have to first determine whether or not there exist irreducible cubic forms of
discriminant, say, DF = ±4 ·312 ·90072 ·95112 > 2.8×1019. This appears to be at or beyond
current computational limits.

6.1.2. Conductor 3305354359 = 41 · 409 · 439 · 449. For there to exist an elliptic curve with
trivial rational 2-torsion and conductor 3305354359, we require the existence of an irreducible
cubic form of discriminant ±4 · 41δ1 · 409δ2 · 439δ3 · 449δ4 , with δi ∈ {0, 1}. We check that,
again, there are no such forms (once more employing a short auxiliary computation in the
case DF = ±4 · 41 · 409 · 439 · 449). If we solve X + Y = Z2 with X and Y S-units for
S = {2, 41, 409, 439, 449}, we find that the solutions to this equation with X ≥ Y , Z > 0
and gcd(X, Y ) squarefree are precisely

(X, Y ) = (2,−1), (2, 2), (8, 1), (41,−16), (41,−32), (41, 8), (82,−1), (128, 41), (409,−328),
(409, 32), (439, 2), (449,−328), (449,−8), (512, 449), (818, 82), (898, 2),
(3272, 449), (3362, 2), (7184, 41), (16769,−128), (16769,−14368), (18409,−16384),
(33538,−18409), (36818, 818), (41984, 41), (68921,−57472), (183641,−1312),
(183641,−56192), (183641, 41984), (359102, 898), (403202,−33538),
(403202,−359102), (403202, 17999), (737959, 183641), (754769,−6544),
(6858521,−919552), (8265641,−16) and (7095601778,−5610270178).

Once again, a short calculation confirms that each elliptic curve arising from these solutions
via twists has even conductor. There are thus no elliptic curves over Q with conductor
3305354359.

Full computational details are available at

http://www.nt.math.ubc.ca/BeGhRe/Examples/3305354359-data.

6.2. Cases with fixed conductor (and corresponding irreducible forms).
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6.2.1. Conductor 399993 = 3 · 11 · 17 · 23 · 31. We next choose an example where full data
is already available for comparison in the LMFDB [38]. In particular, there are precisely
10 isogeny classes of curves of this conductor (labelled 399993a to 399993j in the LMFDB),
containing a total of 21 isomorphism classes. Of these, 7 isogeny classes (and 18 isomorphism
classes) have nontrivial rational 2-torsion.

According to Theorem 1, the curves arise from consideration of cubic forms of discriminant
discriminant ±4K, where K | 3 ·11 ·17 ·23 ·31. The (reduced) irreducible cubic forms F (u, v)
of these discriminants are as follows, where F (u, v) = ω0u

3 + ω1u
2v + ω2uv

2 + ω3v
3.

(ω0, ω1, ω2, ω3) DF (ω0, ω1, ω2, ω3) DF

(1, 1, 1, 3) −4 · 3 · 17 (2, 4,−6,−3) 4 · 3 · 17 · 23
(1, 2, 2, 2) −4 · 11 (2, 5, 2, 6) −4 · 3 · 17 · 23
(1, 2, 2, 6) −4 · 11 · 17 (3, 3,−8,−2) 4 · 3 · 23 · 31

(1, 4,−16,−2) 4 · 11 · 17 · 31 (3, 3, 44, 66) −4 · 3 · 11 · 17 · 23 · 31
(1, 8,−2, 42) −4 · 3 · 17 · 23 · 31 (3, 4, 10, 14) −4 · 11 · 23 · 31

(1, 11,−12,−6) 4 · 3 · 11 · 17 · 31 (3, 7, 5, 7) −4 · 3 · 23 · 31
(2, 0, 7, 1) −4 · 23 · 31 (4, 17, 10, 28) −4 · 11 · 17 · 23 · 31

(2, 1, 14,−2) −4 · 11 · 17 · 31

In each case, we are thus led to solve the Thue-Mahler equation

F (u, v) = 23δ3β111κ1117κ1723κ2331κ31 , (32)

where gcd(u, v) = 1, δ ∈ {0, 1} and β1, κ11, κ17, κ23 and κ31 are arbitrary nonnegative
integers. Applying (13), in order to find a curve of conductor 399993, we require additionally
that, for a corresponding solution to (32),

F (u, v)DF ≡ 0 (mod 3 · 11 · 17 · 23 · 31). (33)

We readily check that the congruence F (u, v) ≡ 0 (mod p) has only the solution u ≡ v ≡
0 (mod p) for the following forms F and primes p (whereby (33) cannot be satisfied by
coprime integers u and v for these forms) :

(ω0, ω1, ω2, ω3) p (ω0, ω1, ω2, ω3) p
(1, 1, 1, 3) 11, 23 (2, 0, 7, 1) 3, 17
(1, 2, 2, 2) 3, 23, 31 (2, 5, 2, 6) 11, 31

(1, 4,−16,−2) 3, 23 (3, 3,−8,−2) 11
(1, 8,−2, 42) 11 (4, 17, 10, 28) 3

(1, 11,−12,−6) 23
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For the remaining 6 forms under consideration, we appeal to UBC-TM. The only solutions
we find satisfying (33) are as follows.

(ω0, ω1, ω2, ω3) (u, v)
(1, 2, 2, 6) (−1851, 892), (14133,−3790)

(2, 1, 14,−2) (13,−5), (−29,−923)
(2, 4,−6,−3) (10,−3), (64, 49), (−95, 199), (−3395, 1189),

(3677,−1069), (5158, 4045), (−23546, 57259), (−77755, 30999)
(3, 3, 44, 66) (1, 0), (1, 2), (−3, 4), (3,−2), (−11, 9), (25,−3),

(231, 2), (−317, 240), (489, 61), (1263,−878), (6853,−4119)
(3, 7, 5, 7) (1, 12), (−29, 26), (78, 1), (423,−160)

(3, 4, 10, 14) (−41, 84), (95,−69), (307, 90)

From these, we compute the conductors of ED in (8), where D ∈ {1, 2}, together with
their twists by −1. The only curves with conductor 399993 arise from the form F with
(ω0, ω1, ω2, ω3) = (2, 4,−6,−3) and the solutions

(u, v) ∈ {(10,−3), (5158, 4045), (−23546, 57259)} .

In each case, D = 2. The solution (u, v) = (10,−3) corresponds to, in the notation of the
LMFBD, curve 399993.j1, (u, v) = (5158, 4045) to 399993.i1, and (u, v) = (−23546, 57259)
to 399993.h1. Note that every form and solution we consider leads to elliptic curves with
good reduction outside {2, 3, 11, 17, 23, 31}, just not necessarily of conductor 399993. By way
of example, if (ω0, ω1, ω2, ω3) = (2, 4,−6,−3) and (u, v) = (−77755, 30999), we find curves
with minimal quadratic twists of conductor

25 · 3 · 11 · 17 · 23 · 31 = 25 · 399993.

To determine the curves of conductor 399993 with nontrivial rational 2-torsion, we are
led to solve the equation X + Y = Z2 in S-units X and Y , and integers Z, where S =
{2, 3, 11, 17, 23, 31}. We employ Magma code available at

http://nt.math.ubc.ca/BeGhRe/Code/UBC-TMCode

to find precisely 2858 solutions with X ≥ |Y | and gcd(X, Y ) squarefree (this computation
took slightly less than 2 hours). Of these, 1397 have Z > 0, with Z largest for the solution
corresponding to the identity

48539191572432− 40649300451407 = 24 · 34 · 11 · 237 − 175 · 315 = 28088952.

As in subsection 5.2, we attach to each solution a pair of elliptic curves E1(X, Y ) and
E2(X, Y ). Of these, the only twists we find to have conductor 399993 are the quadratic
twists by t of Ei(X, Y ) given in the following table. Note that there is some duplication –
the curve labelled 399993.f2 in the LMFDB, for example, arises from three distinct solutions
to X + Y = Z2.
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X Y Ei t LMFDB X Y Ei t LMFDB
16192 −4743 E1 −1 399993.g2 534336 −506447 E2 2 399993.e1
16192 −4743 E2 2 399993.g1 1311552 −527 E1 1 399993.a2
23529 18496 E1 −2 399993.f2 1311552 −527 E2 −2 399993.a1
23529 18496 E2 1 399993.f3 1414017 −1045568 E1 2 399993.b2
116281 −75072 E1 2 399993.f4 1414017 −1045568 E2 −1 399993.b1
116281 −75072 E2 −1 399993.f2 6305121 3027904 E1 2 399993.c1
371008 4761 E1 1 399993.f2 6305121 3027904 E2 −1 399993.c2
371008 4761 E2 −2 399993.f1 6988113 18496 E1 2 399993.c2
519777 −131648 E1 2 399993.d2 6988113 18496 E2 −1 399993.c3
519777 −131648 E2 −1 399993.d1 7745089 −2731968 E1 2 399993.c4
534336 −506447 E1 −1 399993.e2 7745089 −2731968 E2 −1 399993.c2

Full computational details are available at

http://www.nt.math.ubc.ca/BeGhRe/Examples/399993-data.

6.2.2. Conductor 106 − 1. We next treat a slightly larger conductor, which is not available
in the LMFDB currently (but probably within computational range). We have

106 − 1 = 33 · 7 · 11 · 13 · 37.

From Theorem 1, we thus need to consider binary cubic forms F (u, v) = ω0u
3 + ω1u

2v +
ω2uv

2+ω3v
3 of discriminant DF = ±108N1, where N1 | 7·11·13·37 and ω1 ≡ ω2 ≡ 0 (mod 3).

The irreducible forms of this shape are as follows.

(ω0, ω1, ω2, ω3) DF p (ω0, ω1, ω2, ω3) DF p
(1, 0,−6,−2) 108 · 7 37 (2, 3,−78,−26) 108 · 7 · 11 · 13 · 37 none
(1, 0, 21, 16) −108 · 11 · 37 7, 13 (2, 3, 6, 3) −108 · 7 11, 37
(1, 0, 30, 2) −108 · 7 · 11 · 13 none (2, 3, 6, 8) −108 · 37 7
(1, 3, 3, 3) −108 7, 13, 37 (2, 6,−12, 1) 108 · 11 · 13 7
(1, 3, 6, 16) −108 · 37 7 (2, 6, 21, 88) −108 · 11 · 13 · 37 none
(1, 3, 12, 26) −108 · 7 · 13 none (2, 12, 0, 13) −108 · 7 · 11 · 13 none
(1, 3, 33, 117) −108 · 7 · 11 · 37 none (2, 21,−6, 80) −108 · 7 · 11 · 13 · 37 none

(1, 6,−36,−34) 108 · 7 · 13 · 37 11 (3, 3, 18, 20) −108 · 7 · 11 · 13 none
(1, 6, 3, 6) −108 · 37 7 (4, 6, 15, 14) −108 · 13 · 37 11
(1, 6, 9, 26) −108 · 11 · 13 none (5, 6, 27, 14) −108 · 7 · 11 · 37 none
(1, 9, 0, 74) −108 · 7 · 13 · 37 none (5, 9, 3, 21) −108 · 7 · 11 · 37 none

(1, 12, 12, 14) −108 · 13 · 37 11 (7, 0, 12, 14) −108 · 7 · 11 · 37 none
(2, 0,−18,−5) 108 · 11 · 37 13 (10, 3, 42,−16) −108 · 7 · 11 · 13 · 37 none

(2, 0, 3, 3) −108 · 11 7, 37 (10, 6, 12, 3) −108 · 13 · 37 none
(2, 0, 15, 3) −108 · 7 · 37 11, 13 (11, 6, 12, 6) −108 · 7 · 11 · 13 none
(2, 0, 18, 7) −108 · 13 · 37 11 (21, 12, 27, 20) −108 · 7 · 11 · 13 · 37 none

Here, we list primes p for which a local obstruction exists modulo p to finding coprime
integers u and v satisfying (13). It is worth noting at this point that the restriction to forms
with ω1 ≡ ω2 ≡ 0 (mod 3) that follows from the fact that we are considering a conductor
divisible by 33 is a helpful one. There certainly can and do exist irreducible forms F with
108 | DF that fail to satisfy ω1 ≡ ω2 ≡ 0 (mod 3).
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We are thus left to treat 17 Thue-Mahler equations which we solve using UBC-TM; see

http://www.nt.math.ubc.ca/BeGhRe/Examples/999999-data

for computational details. From (13), we require that DFF (u, v) ≡ 0 (mod 7 · 11 · 13 · 37);
the only solutions we find satisfying this constraint are as follows.

(ω0, ω1, ω2, ω3) (u, v)
(1, 0, 30, 2) (−1, 21), (1, 16), (27, 25)

(1, 3, 33, 117) (26,−7)
(1, 9, 0, 74) (−19, 2)

(2, 3,−78,−26) (−1, 3), (−3, 2), (−5,−1), (9,−1), (13, 2), (−17,−58), (−39,−61),
(−57,−10), (−59, 9), (65,−6), (79,−330), (159,−23)

(2, 6, 21, 88) (3, 1), (165,−43)
(2, 12, 0, 13) (−1, 9), (18, 23)

(2, 21,−6, 80) (1,−10), (2, 1), (4,−3), (4,−1), (17, 1),
(19,−5), (21,−2), (138,−11), (1356,−127)

(3, 3, 18, 20) (9, 13), (97,−12)
(5, 6, 27, 14) (14, 1), (19, 6), (−21, 44)
(5, 9, 3, 21) (−1, 2), (6, 1), (8,−3), (−649, 284), (1077,−464)
(7, 0, 12, 14) (−1, 5), (−7, 9), (301,−62), (−459, 553)

(10, 3, 42,−16) (1, 1), (1, 2), (2,−1), (3, 1), (4,−17), (20, 19), (−22,−69), (127, 339)
(10, 6, 12, 3) (2,−1), (5,−13), (−12, 83), (−24, 89), (81,−107), (125,−437)
(11, 6, 12, 6) (−1, 22), (47,−72), (223,−429)

(21, 12, 27, 20) (1,−3), (1, 0), (1, 5), (4,−9), (4, 3), (9,−29),
(19,−15), (29,−40), (316,−455), (551,−805)

The only ones of these for which we find an ED in (8) of conductor 999999 are as follows,
where ED is isomorphic over Q to a curve with model

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6.

(ω0, ω1, ω2, ω3) (u, v) D a1 a2 a3 a4 a6
(1, 0, 30, 2) (27, 25) 6 0 0 1 −40395 5402579
(1, 0, 30, 2) (27, 25) −2 0 0 1 −363555 −145869640
(5, 6, 27, 14) (14, 1) 1 1 −1 0 14700 55223
(5, 6, 27, 14) (14, 1) −3 1 −1 1 1633 −2590
(5, 9, 3, 21) (−1, 2) 6 0 0 1 30 2254
(5, 9, 3, 21) (−1, 2) −2 0 0 1 270 −60865
(10, 6, 12, 3) (125,−437) 2 0 0 1 −17205345 −27554570341
(10, 6, 12, 3) (125,−437) −6 0 0 1 −1911705 1020539642

(21, 12, 27, 20) (4, 3) −1 1 −1 0 12432 −164125
(21, 12, 27, 20) (4, 3) 3 1 −1 1 1381 5618

Each of these listed curves has trivial rational 2-torsion. To search for curves of conductor
999999 with nontrivial rational 2-torsion, we solve the equation X + Y = Z2 in S-units X
and Y , and integers Z, where S = {2, 3, 7, 11, 13, 37}. We find that there are precisely 4336
solutions with X ≥ |Y | and gcd(X, Y ) squarefree. Of these, 2136 have Z > 0, with Z largest
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for the solution corresponding to the identity

103934571636753− 68209863326528 = 315 · 11 · 13 · 373 − 26 · 713 · 11 = 59770152.

Once again, we attach to each solution a pair of elliptic curves E1(X, Y ) and E2(X, Y ). We
find 505270 isomorphism classes of E/Q with good reduction outside of {2, 3, 7, 11, 13, 37}
and nontrivial rational 2-torsion. None of them have conductor 999999, whereby we conclude
that there are precisely 10 isomorphism classes of elliptic curves over Q with conductor 106−1.
Checking that these curves each have distinct traces of Frobenius a47 shows that they are
nonisogenous.

6.2.3. Conductor 109− 1. This example is chosen to be somewhat beyond the current scope
of the LMFDB. We have

109 − 1 = 34 · 37 · 333667

and so, applying Theorem 1, we are led to consider binary cubic forms of discriminant
±4 ·34 ·37δ1 ·333667δ2 , where δi ∈ {0, 1}. These include imprimitive forms with the property
that each of its coefficients ωi is divisible by 3. For such forms, from Theorem 1, we necessarily
have β1 ∈ {0, 1} and hence β1 = 1. Dividing through by 3, we may thus restrict our attention
to primitive forms of discriminant ±4 · 3κ · 37δ1 · 333667δ2 , where δi ∈ {0, 1} and κ ∈ {0, 4}.
For the irreducible forms, we have, by slight abuse of notation (since, for the F listed here
with DF 6≡ 0 (mod 3), the form whose existence is guaranteed by Theorem 1 is actually 3F ),
the following.

(ω0, ω1, ω2, ω3) DF p (ω0, ω1, ω2, ω3) DF p
(1, 1,−3,−1) 4 · 37 333667 (5, 14, 19, 54) −4 · 333667 37
(1, 4, 52, 250) −4 · 333667 37 (6, 18, 168, 323) −4 · 34 · 333667 37
(1, 9, 37, 279) −4 · 333667 none (6, 27, 42, 356) −4 · 34 · 333667 37

(1, 21, 117, 2135) −4 · 34 · 333667 37 (6, 54,−48, 115) −4 · 34 · 333667 37
(2, 0, 3, 1) −4 · 34 37 (10, 18, 96, 229) −4 · 34 · 333667 37

(2, 17,−26,−31) 4 · 333667 37 (26, 9, 102, 4) −4 · 34 · 333667 none
(4, 30, 117, 665) −4 · 34 · 333667 37 (27, 7, 70, 32) −4 · 37 · 333667 none
(4, 35, 14, 216) −4 · 37 · 333667 none (31, 9, 87,−25) −4 · 34 · 333667 none

(5, 6, 9, 6) −4 · 34 · 37 none (49, 51, 63, 55) −4 · 34 · 333667 none
(5, 7, 19, 51) −4 · 333667 37 (52, 55, 72, 37) −4 · 37 · 333667 none

Once again, we list primes p for which a local obstruction exists modulo p to finding coprime
integers u and v satisfying (13). There are thus 8 Thue-Mahler equations left to solve. In
the (four) cases where DF 6≡ 0 (mod 3), these take the shape

F (u, v) = 23δ1 · 37γ1 · 333667γ2 ,

where δ1 ∈ {0, 1}, γ1 and γ2 are nonnegative integers, and u and v are coprime integers. For
the remaining F , the analogous equation is

F (u, v) = 23δ1 · 3δ2 · 37γ1 · 333667γ2 ,

where δi ∈ {0, 1}, γ1, γ2 ∈ Z+ and u, v ∈ Z with gcd(u, v) = 1. We solve these equations
using the UBC-TM Thue-Mahler solver. The only cases where we find that

DFF (u, v) ≡ 0 (mod 37 · 333667)
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occur for (ω0, ω1, ω2, ω3) = (4, 35, 14, 216) and (u, v) = (−8, 1) or (u, v) = (−2, 1), for
(ω0, ω1, ω2, ω3) = (27, 7, 70, 32) and (u, v) = (1,−2) or (2,−1), and for (ω0, ω1, ω2, ω3) =
(52, 55, 72, 37) and (u, v) = (0, 1) or (−3, 5). In each case, all resulting twists have bad
reduction at 2 (and hence cannot have conductor 109 − 1).

To search for curves with nontrivial rational 2-torsion and conductor 109− 1, we solve the
equation X + Y = Z2 in S-units X and Y , and integers Z, where S = {2, 3, 37, 333667}.
There are precisely 98 solutions with X ≥ |Y | and gcd(X, Y ) squarefree. Of these, 41 have
Z > 0, with Z largest for the solution coming from the identity

27027027− 101306 = 34 · 333667− 2 · 373 = 51892.

These correspond via twists to elliptic curves of conductor as large as 28 · 32 · 372 · 3336672,
but none of conductor 109 − 1. There thus exist no curves E/Q of conductor 109 − 1.

Full computational details are available at

http://www.nt.math.ubc.ca/BeGhRe/Examples/999999999-data.

6.3. Curves with good reduction outside {2, 3, 23} : an example of Koutsianis and
of von Kanel and Matchke. This case was worked out by Koutsianis [37] (and also by
von Kanel and Matschke [36], who actually computed E/Q with good reduction outside
{2, 3, p} for all prime p ≤ 163), by rather different methods from those employed here. We
include it here to provide an example where we determine all E/Q with good reduction
outside a specific set S, which is of somewhat manageable size in terms of the set of cubic
forms encountered. Our data agrees with that of [36] and [37].

To begin, we observe that the elliptic curves with good reduction outside {2, 3, 23} and
j-invariant 0 are precisely those with models of the shape

E : Y 2 = X3 ± 2a3b23c, where 0 ≤ a, b, c ≤ 5.

Appealing to (14), we next look through our precomputed list to find all the irreducible
primitive cubic forms of discriminant ±2α3β23γ, where

α ∈ {0, 2, 3, 4}, β ∈ {0, 1, 3, 4, 5} and γ ∈ {0, 1, 2}.
The imprimitive forms we need consider correspond to primitive forms F with either ν2(DF ) =
0 or ν3(DF ) ∈ {0, 1}. We find precisely 95 irreducible, primitive cubic forms of the desired
discriminants.
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(ω0, ω1, ω2, ω3) DF (ω0, ω1, ω2, ω3) DF (ω0, ω1, ω2, ω3) DF

(1, 0,−18,−6) 22 · 35 · 23 (2, 0, 3, 4) −23 · 35 (4, 9, 24, 29) −22 · 34 · 232

(1, 0,−3,−1) 34 (2, 3, 6, 4) −22 · 35 (4, 12, 12, 27) −24 · 33 · 232

(1, 0, 3, 2) −23 · 33 (2, 3, 12, 8) −24 · 33 · 23 (4, 12, 12, 73) −24 · 35 · 232

(1, 0, 6, 2) −22 · 35 (2, 3, 36, 29) −23 · 34 · 232 (4, 18, 9, 24) −22 · 35 · 232

(1, 0, 6, 4) −24 · 34 (2, 3, 36, 98) −23 · 35 · 232 (4, 18, 27, 48) −22 · 35 · 232

(1, 0, 9, 6) −24 · 35 (2, 5, 8, 15) −23 · 3 · 232 (5, 6, 7, 4) −23 · 232

(1, 0, 33, 32) −22 · 34 · 232 (2, 6,−12,−1) 22 · 35 · 23 (5, 6, 15, 8) −23 · 35 · 23
(1, 1, 2, 1) −23 (2, 6, 6, 5) −22 · 35 (5, 9, 12, 10) −22 · 35 · 23
(1, 1, 8, 6) −22 · 232 (2, 6, 6, 25) −22 · 33 · 232 (5, 12, 18, 20) −24 · 35 · 23

(1, 3,−9,−4) 35 · 23 (2, 6, 27, 117) −23 · 35 · 232 (5, 18, 30, 46) −22 · 35 · 232

(1, 3,−6,−4) 22 · 33 · 23 (2, 9,−6,−4) 22 · 35 · 23 (5, 24,−3, 26) −24 · 35 · 232

(1, 3,−3,−2) 33 · 23 (2, 9, 0,−4) 24 · 33 · 23 (6, 3, 12,−7) −23 · 33 · 232

(1, 3,−6,−2) 23 · 35 (2, 9, 48, 185) −24 · 35 · 232 (6, 3, 12, 16) −24 · 33 · 232

(1, 3, 3, 3) −22 · 33 (2, 12, 24, 85) −22 · 35 · 232 (6, 6, 9, 13) −23 · 33 · 232

(1, 3, 3, 5) −24 · 33 (2, 18,−15, 31) −23 · 35 · 232 (6, 9, 12, 23) −23 · 34 · 232

(1, 3, 3, 7) −22 · 35 (3, 0, 3, 2) −24 · 34 (6, 18, 18, 29) −22 · 35 · 232

(1, 3, 3, 13) −24 · 35 (3, 4, 12, 12) −24 · 3 · 232 (7, 6, 9, 4) −23 · 34 · 23
(1, 3, 18, 50) −23 · 35 · 23 (3, 6, 4, 6) −22 · 3 · 232 (7, 15, 3, 17) −22 · 35 · 232

(1, 6,−24,−4) 24 · 35 · 23 (3, 6, 9, 8) −23 · 33 · 23 (8, 9, 12, 13) −22 · 34 · 232

(1, 6, 3, 32) −23 · 35 · 23 (3, 9, 9, 7) −24 · 35 (8, 15, 18, 21) −23 · 34 · 232

(1, 6, 6, 16) −24 · 33 · 23 (3, 9, 9, 49) −22 · 35 · 232 (9, 9, 3, 31) −24 · 35 · 232

(1, 6, 12, 54) −22 · 33 · 232 (3, 18, 36, 116) −24 · 35 · 232 (10, 6, 15, 1) −23 · 33 · 232

(1, 6, 12, 100) −24 · 33 · 232 (3, 27, 9, 29) −24 · 35 · 232 (11, 6, 12, 2) −22 · 33 · 232

(1, 9,−12,−16) 24 · 35 · 23 (4, 0,−18,−3) 24 · 35 · 23 (11, 15, 15, 17) −22 · 35 · 232

(1, 9,−9,−3) 22 · 35 · 23 (4, 0, 6, 1) −24 · 35 (12, 9, 36, 16) −24 · 35 · 232

(1, 9, 27, 165) −22 · 35 · 232 (4, 2, 8, 3) −24 · 232 (12, 36, 36, 35) −24 · 35 · 232

(1, 9, 27, 303) −24 · 35 · 232 (4, 3, 6, 2) −22 · 33 · 23 (13, 9, 18, 12) −22 · 35 · 232

(1, 12, 9, 18) −24 · 35 · 23 (4, 3, 12, 10) −23 · 35 · 23 (13, 15, 27, 7) −22 · 35 · 232

(1, 12, 12, 44) −24 · 33 · 232 (4, 3, 18, 13) −23 · 33 · 232 (21, 9, 27, 11) −24 · 35 · 232

(1, 15, 3,−7) 24 · 35 · 23 (4, 3, 18, 36) −22 · 35 · 232 (23, 30, 36, 20) −24 · 35 · 232

(2, 0, 3, 1) −22 · 34 (4, 4, 9, 1) −24 · 232 (24, 27, 36, 16) −24 · 35 · 232

(2, 0, 3, 2) −23 · 34 (4, 6, 3, 12) −22 · 33 · 232

In each case, we solve the corresponding Thue-Mahler equation specified by Theorem 1.
For example, if DF = ±24 · 3t · 232, with t ≥ 3, then we actually need only solve the (eight)
Thue equations of the shape

F (u, v) = 2δ13δ223δ3 , where δi ∈ {0, 1}.

For all other discriminants, we must treat “genuine” Thue-Mahler equations (where at least
one of the exponents on the right-hand-side of equation (7) is, a priori, unconstrained).
Details of this computation are available at

http://www.nt.math.ubc.ca/BeGhRe/Examples/2-3-23-data.
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In total, we found precisely 730 solutions to these equations, leading, after twisting, to
3856 isomorphism classes of E/Q with good reduction outside {2, 3, 23} and trivial rational
2-torsion.

Once again, to find the curves with nontrivial rational 2-torsion, we solved X + Y = Z2

in S-units X and Y , and integers Z, where S = {2, 3, 23}. There are precisely 118 solutions
with X ≥ |Y | and gcd(X, Y ) squarefree (this computation took less than 1 hour). Of these,
55 have Z > 0, with Z largest for the solution coming from the identity

89424− 23 = 24 · 35 · 23− 23 = 2992.

These correspond via twists to elliptic curves of conductor as large as 28 · 32 · 232, a total
of 1664 isomorphism classes. There thus exist a total of 5520 isomorphism classes (in 3968
isogeny classes) of elliptic curves E/Q with good reduction outside {2, 3, 23}. Note that
432 = 2× 63 of these have jE = 0.

6.4. Curves with good reduction outside {2, 3, 5, 7, 11} : an example of von Kanel
and Matschke. This is the largest computation carried out along these lines by von Kanel
and Matschke [36] (and also a very substantial computation via our approach, taking many
thousand machine hours on 80 cores).

As in the preceding example, note that the curves with models of the shape

E : Y 2 = X3 ± 2a3b5c7d11e, 0 ≤ a, b, c, d, e ≤ 5

are precisely the E/Q with good reduction outside {2, 3, 5, 7, 11} and j-invariant 0. We
next proceed by searching our precomputed list for all irreducible primitive cubic forms of
discriminant 2α3βM , where

α ∈ {0, 2, 3, 4}, β ∈ {0, 1, 3, 4, 5} and M | 52 · 72 · 112.

The imprimitive forms we need consider again correspond to primitive forms F with either
ν2(DF ) = 0 or ν3(DF ) ∈ {0, 1}. We encounter 1796 irreducible cubic forms, which we
tabulate at

http://www.nt.math.ubc.ca/BeGhRe/Examples/2-3-5-7-11-data

where details on the resulting Thue-Mahler computation may also be found. Confirming
the results of von Kanel and Matschke [36], we find that there exist a total of 592192
isomorphism classes (in 453632 isogeny classes) of elliptic curves E/Q with good reduction
outside {2, 3, 5, 7, 11}, including 15552 = 2× 65 with jE = 0.

7. Good reduction outside a single prime

For the remainder of this paper, we will focus our attention on the case of elliptic curves
with bad reduction at a single prime, i.e. curves of conductor p or p2, for p prime. In this
case, our approach simplifies considerably and rather than being required to solve Thue-
Mahler equations, the problem reduces to one of solving Thue equations, i.e. equations of
the shape F (x, y) = m, where F is a form and m is a fixed integer. While, once again, we do
not have a detailed computational complexity analysis of either algorithms for solving Thue
equations or more general algorithms for solving Thue-Mahler equations, computations to
date strongly support the contention that the former is, usually, much, much faster than
the latter, particularly if the set of primes S considered for the Thue-Mahler equations is
anything other than tiny. Since none of these conductors are divisible by 9, we may always
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suppose that jE 6= 0. We note that the data we have produced in these cases totals several
terabytes. As a result, we have not yet determined how best to make it publicly available;
interested readers should contact the authors for further details.

7.1. Conductor N = p. Suppose that E is a curve with conductor N = p prime with
invariants c4 and c6. From Tables 1, 2 and 3, we necessarily have one of

(ν2(c4), ν2(c6)) = (0, 0) or (≥ 4, 3), and ν2(∆E) = 0, or

(ν3(c4), ν3(c6)) = (0, 0) or (1,≥ 3), and ν3(∆E) = 0, or

(νp(c4), νp(c6)) = (0, 0) and νp(∆E) ≥ 1.

From this we see that D = 1 or 2. Theorem 1 then implies that there is a cubic form of
discriminant ±4 or ±4p, and integers u, v, with

F (u, v) = pκp or 8pκp , c4 = D2HF (u, v) and c6 = −1

2
D3GF (u, v),

for D ∈ {1, 2} and κp a nonnegative integer. Note that, while the smallest absolute discrim-
inant for an irreducible cubic form in Z[x, y] is 23, there do exist reducible cubic forms of
discriminants 4 and −4 which we must consider.

Appealing to Théorème 2 of Mestre and Oesterlé [43] (and using [10]), we can actu-
ally restrict the choices for n dramatically. In fact, we have 3 possibilities – either p ∈
{11, 17, 19, 37}, or p = t2 + 64 for some integer t, or, in all other cases, ∆E = ±p. There are
precisely 14 isomorphism classes of E/Q with conductor in {11, 17, 19, 37}; one may consult
Cremona [15] for details. If we can write p = t2 + 64 for an integer t (which we may, without
loss of generality, assume to satisfy t ≡ 1 (mod 4)), then the (2-isogenous) curves defined by

y2 + xy = x3 +
t− 1

4
· x2 − x

and

y2 + xy = x3 +
t− 1

4
· x2 + 4x+ t

have rational points of order 2 given by (x, y) = (0, 0) and (x, y) = (−t/4, t/8), respectively,
and discriminants t2+64 and −(t2+64)2, respectively. In the final case (in which ∆E = ±p),
we have (using the notation of Section 3 and, in particular, appealing to (10) which, in this
case yields the equation 1 = νp(∆E) = νp(DF ) + 2κp)

α0 = 2, α1 ∈ {0, 3}, β0 = β1 = 0, κp = 0 and N1 ∈ {1, p}.

Theorem 1 thus tells us that to determine the elliptic curves of conductor p, we are led to
to find all binary cubic forms (reducible and irreducible) F of discriminant ±4 and ±4p and
then solve the Thue equations

F (x, y) = 1 and F (x, y) = 8.

Since for any solution (x, y) to the equation F (x, y) = 1, we have F (2x, 2y) = 8, we may
thus restrict our attention to the equation F (x, y) = 8 (where we assume that gcd(x, y) | 2).
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7.2. Conductor N = p2. In case E has conductor N = p2, we have that either E is
a either a quadratic twist of a curve of conductor p, or we have νp(∆E) ∈ {2, 3, 4}. To
see this, note that, via Table 3, p | c4, p | c6 and D | 2p, and we may suppose that
(νp(c4(E)), νp(c6(E)), νp(∆E)) is one of

(≥ 1, 1, 2), (1,≥ 2, 3), (≥ 2, 2, 4), (≥ 2,≥ 3, 6), (2, 3,≥ 7), (≥ 3, 4, 8), (3,≥ 5, 9), (≥ 4, 5, 10).

In each case with νp(c6(E)) ≥ 3, denote by E1 the quadratic twist of E by (−1)(p−1)/2p. For
curves E with

(νp(c4(E)), νp(c6(E)), νp(∆E)) = (≥ 2,≥ 3, 6),

one may verify that E1 has good reduction at p and hence conductor 1, a contradiction. If
we have

(νp(c4(E)), νp(c6(E)), νp(∆E)) = (2, 3,≥ 7),

then

(νp(c4(E1)), νp(c6(E1)), νp(∆E1)) = (0, 0, νp(∆E)− 6)

and so E1 has conductor p. In the remaining cases, where

(νp(c4(E)), νp(c6(E)), νp(∆E)) ∈ {(≥ 3, 4, 8), (3,≥ 5, 9), (≥ 4, 5, 10)},

we check that

(νp(c4(E1)), νp(c6(E1)), νp(∆E1)) ∈ {(≥ 1, 1, 2), (1,≥ 2, 3), (≥ 2, 2, 4)}.

It follows that, in order to determine all isomorphism classes of E/Q of conductor p2, it
suffices to carry out the following program.

• Find all curves of conductor p.
• Find E/Q with minimal discriminant ∆E ∈ {±p2,±p3,±p4}, and then
• consider all appropriate quadratic twists of these curves.

The fact that we can essentially restrict attention to E/Q with minimal discriminant

∆E ∈ {±p2,±p3,±p4} (34)

(once we have all curves of conductor p) was noted by Edixhoven, de Groot and Top in
Lemma 1 of [24]. To find the E satisfying (34), Theorem 1 (with specific appeal to (10))
leads us to consider Thue equations of the shape

F (x, y) = 8 for F a form of discriminant ± 4p2, (35)

F (x, y) = 8p for F a form of discriminant ± 4p (36)

and

F (x, y) = 8p for F a form of discriminant ± 4p2, (37)

corresponding to ∆E = ±p2, ±p3 and ±p4, respectively.
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c4 c6 p ∆E NE

4353 287199 17 17 17
33 −81 17 17 17

t2 + 48 −t(t2 + 72) t2 + 64 t2 + 64 t2 + 64
273 4455 17 172 17

t2 − 192 −t(t2 + 576) t2 + 64 −(t2 + 64)2 t2 + 64
1785 75411 7 73 72

105 1323 7 −73 72

33 12015 17 −174 17

Table 6. All curves of conductor p and p2, for p prime, corresponding to
reducible forms (i.e. with nontrivial rational 2-torsion). Note that t is any
integer so that t2 + 64 is prime. For the sake of brevity, we have omitted
curves that are quadratic twists by ±p of curves of conductor p.

7.3. Reducible forms. To find all elliptic curves E/Q with conductor p or p2 arising from
reducible forms, via Theorem 1 we are led to solve equations

F (x, y) = 8pn with n ∈ Z and gcd(x, y) | 2, (38)

where F is a reducible binary cubic form of discriminant ±4, ±4p and ±4p2. This is an
essentially elementary, though rather painful, exercise. Alternatively, we may observe that
curves of conductor p or p2 arising from reducible cubic forms are exactly those with at least
one rational 2-torsion point. We can then use Theorem I of Hadano [29] to show that the
only such p are p = 7, 17 and p = t2 + 64 for integer t. In any case, after some rather
tedious but straightforward work, we can show that the elliptic curves of conductor p or p2

corresponding to reducible forms, are precisely those given in Table 6 (up to quadratic twists
by ±p).

7.4. Irreducible forms : conductor p. A quick search demonstrates that there are no
irreducible cubic forms of discriminant ±4. Consequently if we wish to find elliptic curves of
conductor p coming from irreducible cubics in Theorem 1, we need to solve equations of the
shape F (x, y) = 8 for all cubic forms of discriminant ±4p. An almost immediate consequence
of this is the following.

Proposition 3. Let p > 17 be prime. If there exists an elliptic curve E/Q of conductor p,
then either p = t2 + 64 for some integer t, or there exists an irreducible binary cubic form of
discriminant ±4p.

On the other hand, if we denote by h(K) the class number of a number field K, classical
results of Hasse [32] imply the following.

Proposition 4. Let p ≡ ±1 (mod 8) be prime and δ ∈ {0, 1}. If there exists an irreducible
cubic form of discriminant (−1)δ4p, then

h
(
Q(
√

(−1)δp)
)
≡ 0 (mod 3).

Combining Propositions 3 and 4, we thus have
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Corollary 5 (Theorem 1 of Setzer [58]). Let p ≡ ±1 (mod 8) be prime. If there exists an
elliptic curve E/Q of conductor p, then either p = t2 + 64 for some integer t, or we have

h (Q(
√
p)) · h

(
Q(
√
−p)

)
≡ 0 (mod 3).

We remark that Proposition 3 is actually a rather stronger criterion for guaranteeing the
non-existence of elliptic curves of conductor p than Corollary 5. Indeed, by way of example,
we may readily check that there are no irreducible cubic forms of discriminant ±4p for

p ∈ {23, 31, 199, 239, 257, 367, 439},

(and hence no elliptic curves of conductor p for these primes) while, in each case, we have
that 3 | h

(
Q(
√
p)
)
· h (Q(

√
−p)).

7.5. Irreducible forms : conductor p2. As noted earlier, to determine all elliptic curves
of conductor p2 for p prime, arising via Theorem 1 from irreducible cubics, it suffices to
find those of conductor p and those of conductor p2 with ∆F = ±p2,±p3 and ±p4 (and
subsequently twist them). We explore these cases below.

7.5.1. Elliptic curves of discriminant ±p3. To find elliptic curves of discriminant ±p3, we
need to solve Thue equations of the shape F (x, y) = 8p, where F runs over all cubic forms of
discriminant ∆F = ±4p. These forms are already required to compute curves of conductor p.
Now, we can either proceed directly to solve F (x, y) = 8p or transform the problem into one
of solving a pair of new Thue equations of the shape Gi(x, y) = 8. In practice, we used the
former when solving rigorously and the latter when solving heuristically (see Section 8.3).

We now describe this transformation. Let F (x, y) = ax3 + bx2y+ cxy2 + dy3 be a reduced
form of discriminant ±4p. Since p | ∆F , we have

F (x, y) ≡ a(x− r0y)2(x− r1y) (mod p),

where we must have that p - a, since F is a reduced form (which implies that 1 ≤ a < p).
Comparing coefficients of x shows that

2r0 + r1 ≡ −b/a (mod p), r20 + 2r0r1 ≡ c/a (mod p)

and

r20r1 ≡ −d/a (mod p).

Multiply the first two of these by a and add them to get

3ar20 + 2br0 + c ≡ 0 (mod p).

We can solve this for r0 and hence r1:

(r0, r1) ≡ (3a)−1 (−b± t,−b∓ 2t) (mod p),

where we require that t satisfies t2 ≡ b2 − 3ac (mod p). Finding square roots modulo p can
be done efficiently via the Tonelli-Shanks algorithm, for example (see e.g. Shanks [60]), and
almost trivially if, say, p ≡ 3 (mod 4). Once we have these (r0, r1), we can readily check
which pair satisfies r20r1 ≡ −d/a (mod p).

Now if F (x, y) = 8p then we must have either

x ≡ r0y (mod p) or x ≡ r1y (mod p).
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In either case, write x = riy + pu, which maps the equation F (x, y) = 8p to a pair of
equations of the shape

Gi(u, y) = 8,

where

Gi(u, y) = ap2u3 + (3apri + bp)u2y + (3ar2i + 2bri + c)uy2 +
1

p
(ar3i + br2i + cri + d)y3.

Notice that ∆Gi = p2∆F . In practice, for our deterministic approach, we will actually
solve the equation F (x, y) = 8p directly. For our heuristic approach (where a substantial
increase in the size of the form’s discriminant is not especially problematic), we will reduce
to consideration of the equations Gi(x, y) = 8.

7.5.2. A (conjecturally infinite) family of forms and solutions. We note that there are fam-
ilies of primes for which we can guarantee that the equation F (x, y) = 8p has solutions. By
way of example, define a quartic form pr,s via

pr,s = r4 + 9r2s2 + 27s4.

Then for a given r, s and p = pr,s the cubic form

F (x, y) = sx3 + rx2y − 3sxy2 − ry3

has discriminant 4p. Additionally one can readily verify the polynomial identities

F (2r2/s+ 6s,−2r) = 8p and F (6s,−18s2/r − 2r) = 8p.

If we set s ∈ {1, 2} in the first of these, or r ∈ {1, 2} in the second, then we arrive at four
one-parameter families of forms of discriminant 4p for which the equation F (x, y) = 8p has
a solution, namely:

(p, x, y) = (r4 + 9r2 + 27, 2r2 + 6,−2r), (r4 + 36r2 + 432, r2 + 12,−2r),

(27s4 + 9s2 + 1, 6s,−18s2 − 2), (27s4 + 36s2 + 16, 6s,−9s2 − 4).

Similarly, if we define

pr,s = r4 − 9r2s2 + 27s4

then the form

F (x, y) = sx3 + rx2y + 3sxy2 + ry3

has discriminant −4p, and the equation F (x, y) = 8p has solutions

(x, y) = (−2r2/s+ 6s, 2r) and (6s,−18s2/r + 2r)

and hence we again find (one parameter) families of primes corresponding to either r ∈ {1, 2}
or s ∈ {1, 2}:

(p, x, y) =(r4 − 9r2 + 27,−2r2 + 6, 2r), (r4 − 36r2 + 432,−r2 + 12, 2r),

(27s4 − 9s2 + 1, 6s,−18s2 + 2), (27s4 − 36s2 + 16, 6s,−9s2 + 4).

We expect that each of the quartic families described here attains infinitely many prime
values, but proving this is beyond current technology.
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7.5.3. Elliptic curves of discriminant p2 and p4. To find elliptic curves of discriminant p2

and p4 via Theorem 1, we need to solve Thue equations F (x, y) = 8 and F (x, y) = 8p,
respectively, for cubic forms F of discriminant 4p2. Such forms are quite special and it turns
out that they form a 2-parameter family.

Indeed, in order for there to exist a cubic form of discriminant 4p2, it is necessary and
sufficient that we are able to write p = r2 + 27s2 for positive integers r and s, whereby F is
equivalent to the form

Fr,s(x, y) = sx3 + rx2y − 9sxy2 − ry3.

To see this, note that the existence of an irreducible cubic form of discriminant 4p2 for prime
p necessarily implies that of a (cyclic) cubic field of discriminant p2 and field index 2. From
Silvester, Spearman and Williams [61], there is a unique such field up to isomorphism, which
exists precisely when the prime p can be represented by the quadratic form r2 + 27s2. We
conclude as desired upon observing that

DFr,s = 4
(
r2 + 27s2

)2
.

It remains, then, to solve the Thue equations

Fr,s(x, y) = 8 and Fr,s(x, y) = 8p.

We can transform the problem of solving the second of these equations to one of solving a
related Thue equation of the form Gr,s(x, y) = 8. This transformation is quite similar to the
one described in the previous subsection.

First note that we may assume that p - y, since otherwise, we would require that p | sx,
contradicting the facts that s <

√
p and p2 - F . Since p2 | ∆F , it follows that the congruence

su3 + ru2 − 9su− r ≡ 0 (mod p)

has a unique solution modulo p; one may readily check that this satisfies u ≡ 9s/r (mod p):

su3 + ru2 − 9su− r ≡ −r−3 · (r2 − 27s2)(r2 + 27s2) ≡ 0 (mod p).

Consequently, we know that x ≡ uy (mod p). Substituting x = uy + vp into F gives

Fr,s(uy + vp, y) = a0v
3 + b0v

2y + c0vy
2 + d0y

3

so, with a quick renaming of variables, we obtain

Gr,s(x, y) = a0x
3 + b0x

2y + c0xy
2 + d0y

3 = 8,

where

a0 = sp2, b0 = (3us+ r)p, c0 = 3u2s+ 2ru− 9s and d0 = (u3s+ ru2 − 9us− r)/p.

A little algebra confirms that

∆Gr,s = 4p4.

As noted in the previous subsection, we have solved Fr,s(x, y) = 8p directly in our determin-
istic approach, while we solved equation Gr,s(x, y) = 8 for our heuristic method.
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7.5.4. Elliptic curves of discriminant −p2 and −p4. Elliptic curves of discriminant −p2 and
−p4 can be found through Theorem 1 by solving the Thue equations F (x, y) = 8 and
F (x, y) = 8p, respectively, this time for cubic forms F of discriminant −4p2. As in the
cases treated in the preceding subsection, these forms can be described as a 2-parameter
family. Specifically, such forms arise precisely when there exist integers r and s such that
p = |r2 − 27s2|, in which case the form F is equivalent to

Fr,s(x, y) = sx3 + rx2y + 9sxy2 + ry3.

The primes p for which we can write p = |r2 − 27s2| are those with p ≡ ±1 (mod 12). To
see this, note first that if p ≡ 1 (mod 3) and p = |r2 − 27s2|, then necessarily p = r2 − 27s2,
so that p ≡ 1 (mod 4), while, if p ≡ −1 (mod 3) and p = |r2 − 27s2|, then p = 27s2 − r2
so that p ≡ −1 (mod 4). It follows that necessarily p ≡ ±1 (mod 12). To show that this is
sufficient to have p = |r2 − 27s2| for integers r and s, we appeal to the following.

Proposition 6. If p ≡ 1 (mod 12) is prime, there exist positive integers r and s such that

r2 − 27s2 = p, with r <
3

2

√
6p and s <

5

18

√
6p.

If p ≡ −1 (mod 12) is prime, there exist positive integers r and s such that

r2 − 27s2 = −p, with r <
5

2

√
2p and s <

1

2

√
2p.

This result is, in fact, an almost direct consequence of the following.

Theorem 7 (Theorem 112 from Nagell [48]). If p ≡ 1 (mod 12) is prime, there exist positive
integers u and v such that

p = u2 − 3v2, u <
√

3p/2 and v <
√
p/6.

If p ≡ −1 (mod 12) is prime, there exist positive integers u and v such that

−p = u2 − 3v2, u <
√
p/2 and v <

√
p/2.

Proof of Proposition 6. If p ≡ ±1 (mod 12), Theorem 7 guarantees the existence of integers
u and v such that p = |u2− 3v2|. If 3 | v then we set r = u, s = v/3. Clearly 3 - u, so if 3 - v
then we have (replacing v by −v is necessary) that u ≡ v (mod 3). If we now set r = 2u+3v
and s = (2v + u)/3, then it follows that

|r2 − 27v2| = |(2u+ 3v)2 − 3(2v + u)2| = |u2 − 3v2| = p

and hence either

|r| ≤ 2
√

3p/2 + 3
√
p/6 =

3

2

√
6p and |s| ≤ 1

3
(2
√
p/6 +

√
3p/2) =

5

18

√
6p,

or

|r| ≤ 2
√
p/2 + 3

√
p/2 =

5

2

√
2p and |s| ≤ 1

3
(2
√
p/2 +

√
p/2) =

1

2

√
2p.

�

Again, we are able to reduce the problem of solving Fr,s(x, y) = 8p to that of treating a
related equation Gr,s(x, y) = 8. As before, note that if u ≡ −9s/r (mod p), then

su3 + ru2 + 9su+ r ≡ r−3(r2 − 27s2)(r2 + 27s2) ≡ 0 (mod p).

34



Again, write x = r0y + vp so that, after renaming v, we have

Gr,s(x, y) = a0x
3 + b0x

2y + c0xy
2 + d0y

3 = 8,

where

a0 = sp2, b0 = (3us+ r)p, c0 = 3u2s+ 2ru+ 9s and d0 = (u3s+ ru2 + 9us+ r)/p.

Note that, in contrast to the case where p = r2 + 27s2, here p is represented by an
indefinite quadratic form and so the presence of infinitely many units in Q(

√
3) implies that

a given representation is not unique. If, however, we have two solutions to the equation
|r2 − 27s2| = p, say (r1, s1) and (r2, s2), then the corresponding forms

s1x
3 + r1x

2y + 9s1xy
2 + r1y

3 and s2x
3 + r2x

2y + 9s2xy
2 + r2y

3

may be shown to be GL2(Z)-equivalent.

8. Computational details

As noted earlier, the computations required to generate curves of prime conductor p (and
subsequently conductor p2) fall into a small number of distinct parts.

8.1. Generating the required forms. To find the irreducible forms potentially corre-
sponding to elliptic curves of prime conductor p ≤ X for some fixed positive real X, arguing
as in Section 5, we tabulated all reduced forms F (x, y) = ax3 + bx2y + cxy2 + d with dis-
criminants in (0, 4X] and [−4X, 0), separately. As each form was generated, we checked to
see if it actually satisfied the desired definition of reduction. Of course, this does not only
produce forms with discriminant ±4p – as each form was produced, we kept only those whose
discriminant was in the appropriate range, and equal to ±4p for some prime p. Checking
primality was done using the Miller-Rabin primality test (see [44], [55]; to make this deter-
ministic for the range we require, we appeal to [62]). While it is straightforward to code the
above in computer algebra packages such as sage [57], maple [42] or Magma [9], we instead
implemented it in c++ for speed. To avoid possible numerical overflows, we used the CLN

library [30] for c++.
We computed forms of discriminant ±4p in two separate runs — first to p ≤ 1012 and

then a second run to p ≤ 2 × 1013. In the first of these, we constructed all the forms and
explicitly saved them to files. Constructing all the required positive discriminant forms took
approximately 40 days of CPU time on a modern server, and about 300 gigabytes of disc
space. Thankfully, the computation is easily parallelised and it only took about 1 day of
real time. We split the jobs by running a manager which distributed a-values to the other
cores. The output from each a-value was stored as a tab-delimited text file with one tuple
of p, a, b, c, d on each line. Generating all forms of negative discriminant took about 3 times
longer and required about 900 gigabytes of disc space. The distribution of forms is heavily
weighted to small values of a. To allow us to spread the load across many CPUs we actually
split the task into 2 parts. We first ran a ≥ 3, with the master node distributing a-values
to the other cores. We then ran a = 1 and 2 with the master node distributing b-values
to the other cores. The total CPU time was about three times longer than for the positive
case (there being essentially three times as many forms), but more real-time was required
due to these complications. Thus generating all forms took less than 1 week of real time but
required about 1.2 terabytes of disc space.
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These forms were then sorted by discriminant while keeping positive and negative dis-
criminant forms separated. Sorting a terabyte of data is a non-trivial task, and in practice
we did this by first sorting1 the forms for each a-value and then splitting them into files of
discriminants in the ranges [n × 109, (n + 1) × 109) for n ∈ [0, 999]. Finally, all the files of
each discriminant range were sorted together. This process for positive and negative dis-
criminant forms took around two days of real time. We found 9247369050 forms of positive
discriminant 4p and 27938060315 of negative discriminant −4p, with p bounded by 1012.
Of these, 475831852 and 828238359, respectively had F (x, y) = 8 solvable (by the heuristic
method described below), leading to 159552514 and 276339267 elliptic curves of positive and
negative discriminant, respectively, with prime conductor up to 1012.

The second run to p ≤ 2 × 1013 required a different workflow due to space constraints.
Saving all forms to disc was simply impractical — we estimated it to require over 20 terabytes
of space! Because of this we combined the form-generation code with the heuristic solution
method (see below) and kept only those forms F (x, y) for which solutions to F (x, y) = 8
existed. Since only a small fraction of forms (asymptotically likely 0) have solutions, the
disc space required was considerably less. Indeed to store all the required forms took about
250 and 400 gigabytes for positive and negative forms respectively. This then translated
into about 65 and 115 gigabytes of positive and negative discriminant curves, respectively,
with prime conductor up to 2 × 1013. This second computation took roughly 20 times
longer than the first, requiring about 4 months of real-time. This led to a final count
of 1738595275 and 3011354026 (isomorphism classes of) curves of positive and negative
discriminant, respectively, with prime conductor up to 2× 1013.

8.2. Complete solution of Thue equations : conductor p. For each form encountered,
we needed to solve the Thue equation

ax3 + bx2y + cxy2 + dy3 = 8

in integers x and y with gcd(x, y) ∈ {1, 2}. We approached this in two distinct ways.
To solve the Thue equation rigorously, we appealed to by now well-known arguments of

Tzanakis and de Weger [68], based upon lower bounds for linear forms in complex logarithms,
together with lattice basis reduction; these are implemented in several computer algebra
packages, including Magma [9] and Pari/GP [51]. The main computational bottleneck in
this approach is typically that of computing the fundamental units in the corresponding
cubic fields; for computations p of size up to 109 or so, we encountered no difficulties with
any of the Thue equations arising (in particular, the fundamental units occurring can be
certified without reliance upon the Generalized Riemann Hypothesis).

We ran this computation in Magma [9], using its built-in Thue equation solver. Due
to memory consumption issues, we fed the forms into Magma in small batches, restarting
Magma after each set. We saved the output as a tuple

p, a, b, c, d, n, {(x1, y1), . . . , (xn, yn)},

where p, a, b, c, d came from the form, n counts the number of solutions of the Thue equation
and (xi, yi) the solutions. These solutions can then be converted into corresponding elliptic
curves in minimal form using Theorem 1 and standard techniques.

1Using the standard unix sort command and taking advantage of multiple cores.
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For positive discriminant, this approach works without issue for p < 1010. For forms of
negative discriminant −4p, however, the fundamental unit εp in the associated cubic field
can be extremely large (i.e. log |εp| can be roughly of size

√
p). For this reason, finding

all negative discriminant curves with prime conductor exceeding 2 · 109 or so proves to be
extremely time-consuming. Consequently, for large p, we turned to a non-exhaustive method,
which, though it finds solutions to the Thue equation, is not actually guaranteed to find them
all.

8.3. Non-exhaustive, heuristic solution of Thue equations. If we wish to find all
“small” solutions to a Thue equation (which, subject to various well-accepted conjectures,
might actually prove to be all solutions), there is an obvious and very computationally
efficient approach we can take, based upon the idea that, given any solution to the equation
F (x, y) = m for fixed integer m, we necessarily either have that x and y are (very) small,
relative to m, or that x/y is a convergent in the infinite simple continued fraction expansion
to a root of the equation F (x, 1) = 0.

Such techniques were developed in detail by Pethő [53], [54]; in particular, he provides
a precise and computationally efficient distinction between “large” and “small” solutions.
Following this, for each form F under consideration, we expanded the roots of F (x, 1) = 0
to high precision, again using the CLN library for c++. We then computed the continued
fraction expansion for each real root, along with its associated convergents. Each convergent
x/y was then substituted into F (x, y) and checked to see if F (x, y) = ±1,±8. Replacing
(x, y) by one of (−x,−y), (2x, 2y) or (−2x,−2y), if necessary, then provided the required
solutions of F (x, y) = 8. The precision was chosen so that we could compute convergents
x/y with |x|, |y| ≤ 2128 ≈ 3.4 × 1038. We then looked for solutions of small height using a
brute force search over a relatively small range of values.

To “solve” F (x, y) = 8 by this method, for all forms with discriminant ±4p with p ≤ 1012,
took about 1 week of real time using 80 cores. The resulting solutions files (in which we stored
also forms with no corresponding solutions) required about 1.5 terabytes of disc space. Again,
the files were split into files of absolute discriminant (or more precisely absolute discriminant
divided by 4) in the ranges [n×109, (n+1)×109) for n ∈ [0, 999]. For the second computation
run to p ≤ 2× 1013, we combined the form-generation and heuristic-solutions steps, storing
only forms which had solutions. This produced about 235 and 405 gigabytes of data for
positive and negative discriminants, respectively.

8.4. Conversion to curves. Once one has a tuple (a, b, c, d, x, y), one then computes
GF (x, y) and HF (x, y), appeals to Theorem 1 and checks twists. This leaves us with a
list of pairs (c4, c6) corresponding to elliptic curves. It is now straightforward to derive
a1, a2, a3, a4 and a6 for a corresponding elliptic curve in minimal form (see e.g. Cremona
[16]). For each curve, we saved a tuple p, a1, a2, a3, a4, a6,±1 with the last entry being the
sign of the discriminant of the form used to generate the curve (which coincides with the
sign of the discriminant of the curve). We then merged the curves with positive and negative
discriminants and added the curves with prime conductor arising from reducible forms (i.e.
of small conductor or for primes of the form t2 +64). After sorting by conductor, this formed
a single file of about 17 gigabytes for all curves with prime conductor p < 1012 and about
180 gigabytes for all curves with conductor p < 2× 1013.
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8.5. Conductor p2. The conductor p2 computation was quite similar, but was split further
into parts.

8.5.1. Twisting conductor p. The vast majority of curves of conductor p2 that we encountered
arose as quadratic twists of curves of conductor p. To compute these, we took all curves
with conductor p ≤ 1010 and calculated the invariants c4 and c6. The twisted curve then has
corresponding c-invariants

c′4 = p2c4 and c′6 = (−1)(p−1)/2p3c6.

The minimal a-invariants were then computed as for curves of conductor p.
We wrote a simple c++ program to read curves of conductor p and then twist them,

recompute the a-invariants and output them as a tuple p2, a1, a2, a3, a4, a6,±1. The resulting
code only took a few minutes to process the approximately 1.1× 107 curves.

8.5.2. Solving F (x, y) = 8p with F of discriminant ±4p. There was no need to retabulate
forms for this computation; we reused the positive and negative forms of discriminant ±4p
with p ≤ 1010 from the conductor-p computations. We subsequently rigorously solved the
corresponding equations F (x, y) = 8p for p ≤ 108. To solve the Thue equation F (x, y) = 8p
for 108 < p ≤ 1010, using the non-exhaustive, heuristic method, we first converted the
equation to a pair of new Thue equations of the form Gi(u, y) = 8 as described in Section
7.5.1 and then applied Pethő’s solution search method (where we searched for solutions to
these new equations with |y| bounded by 2128 and |u| = |(x − riy)/p| bounded in such way
as to guarantee that our original |x| is also bounded by 2128).

The solutions were then processed into curves as for the conductor p case above, and the
resulting curves were twisted by ±p in order to obtain more curves of conductor p2.

8.5.3. Solving F (x, y) ∈ {8, 8p} with F of discriminant ±4p2. To find forms of discriminant
4p2 with p ≤ 1010 we need only check to see which primes are of the form p = r2 + 27s2

in the desired range. To do so, we simply looped over r and s values and then again
checked primality using Miller-Rabin. As each prime was found, the corresponding p, r, s
tuple was converted to a form as in Section 7.5.3, and the Thue equations F (x, y) = 8 and
F (x, y) = 8p were solved, using the rigorous approach for p < 106 and the non-exhaustive
method described previously for 106 < p ≤ 1010. Again, in the latter situation, the equation
F (x, y) = 8p was converted to a new equation G(x, y) = 8 as described in Section 7.5.3.
The process for forms of discriminant −4p2 was very similar, excepting that more care is
required with the range of r and s (appealing to Proposition 6). The non-exhaustive method
solving both F (x, y) = 8 and F (x, y) = 8p for positive and negative forms took a total of
approximately 5 days of real time on a smaller server of 20 cores. The rigorous approach,
even restricted to prime p < 106 was much, much slower.

The solutions were then converted to curves as with the previous cases and each resulting
curve was twisted by ±p to find other curves of conductor p2.

9. Data

9.1. Previous work. The principal prior work on computing table of elliptic curves of prime
conductor was carried out in two lengthy computations, by Brumer and McGuinness [11] in
the late 1980s and by Stein and Watkins [64] slightly more than ten years later. For the
first of these computations, the authors fixed the a1, a2 and a3 invariants (12 possibilities)
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and looped over a4 and a6 chosen to make the corresponding discriminant small. By this
approach, they were able to find 311243 curves of prime conductor p < 108 (representing
approximately 99.6% of such curves). In the latter case, the authors looped instead over c4
and c6, subject to (necessary) local conditions. They obtained a large collection of elliptic
curves of general conductor to 108, and 11378912 of those with prime conductor to 1010

(which we estimate to be slightly in excess of 99.8% of such curves).

9.2. Counts : conductor p. By way of comparison, we found the following numbers of
isomorphism classes of elliptic curves over Q with prime conductor p ≤ X:

X ∆E > 0 ∆E < 0 Ratio2 Total Expected Total / Expected
103 33 51 2.3884 84 68 1.2353
104 129 228 3.1239 357 321 1.1122
105 624 1116 3.1986 1740 1669 1.0425
106 3388 5912 3.0450 9300 9223 1.0084
107 19605 34006 3.0087 53611 52916 1.0131
108 114452 198041 2.9941 312493 311587 1.0029
109 685278 1187686 3.0038 1872964 1869757 1.0017

2× 109 1178204 2040736 3.0001 3218940 3216245 1.0008
1010 4171055 7226982 3.0021 11398037 11383665 1.0013
1011 25661634 44466339 3.0026 70127973 70107401 1.0003
1012 159552514 276341397 2.9997 435893911 435810488 1.0002
1013 999385394 1731017588 3.0001 2730402982 2730189484 1.00008

2× 1013 1738595275 3011354026 3.0000 4749949301 4749609116 1.00007

The data above the line is rigorous; for positive discriminant, we actually have a rigorous
result to 1010. For the positive forms this took about one week of real time using 80 cores.
Unfortunately, the negative discriminant forms took significantly longer, roughly 2 months of
real time using 80 cores. Heuristics given by Brumer and McGuinness [11] suggest that the
number of elliptic curves of negative discriminant of absolute discriminant up to X should be
asymptotically

√
3 times as many as those of positive discriminant in the same range – here

we report the square of this ratio in the given ranges. The aforementioned heuristic count
of Brumer and McGuinness suggests that the expected number of E with prime NE ≤ X
should be √

3

12

(∫ ∞
1

1√
u3 − 1

du+

∫ ∞
−1

1√
u3 + 1

du

)
Li(X5/6),

which we list (after rounding) in the table above. It should not be surprising that this
“expected” number of curves appears to slightly undercount the actual number, since it
does not take into account the roughly

√
X/ logX curves of conductor p = n2 + 64 and

discriminant −p2 (counting only curves of discriminant ±p).

9.3. Counts : conductor p2. To compile the final list of curves of conductor p2, we com-
bined the five lists of curves: twists of curves of conductor p, curves from forms of discriminant
+4p and −4p, and curves from discriminant +4p2 and −4p2. The list was then sorted and
any duplicates removed. The resulting list is approximately one gigabyte in size. The counts
of curves are as follows; here we list numbers of isomorphism classes of curves of conductor
p2 for p prime with p ≤ X.
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X ∆E > 0 ∆E < 0 Total Ratio2

103 53 93 146 3.0790
104 191 322 513 2.8421
105 764 1304 2068 2.9132
106 3764 6356 10120 2.8515
107 20539 35096 55635 2.9198
108 116894 200799 317693 2.9508
109 691806 1195262 1887068 2.9851
1010 4189445 7247980 11437425 2.9931

Subsequently we decided that we should recompute the discriminants of these curves as a
sanity check, by reading the curves into sage and using its built-in elliptic curve routines to
compute and then factor the discriminant. This took about one day on a single core.

The only curves of genuine interest are those that do not arise from twisting, i.e. those of
discriminant ±p2, ±p3 and ±p4. In the last of these categories, we found only 5 curves, of
conductors 112, 432, 4312, 4332 and 330132. The first four of these were noted by Edixhoven,
de Groot and Top [24] (and are of small enough conductor to now appear in Cremona’s
tables). The fifth, satisfying

(a1, a2, a3, a4, a6) = (1,−1, 1,−1294206576, 17920963598714),

has discriminant 330134. For discriminants ±p2 and ±p3, we found the following numbers
of curves, for conductors p2 with p ≤ X :

X ∆E = −p2 ∆E = p2 ∆E = −p3 ∆E = p3

103 12 4 7 4
104 36 24 9 5
105 80 58 12 9
106 203 170 17 15
107 519 441 24 23
108 1345 1182 32 36
109 3738 3203 48 58
1010 10437 9106 60 86

It is perhaps worth observing that the majority of these curves arise from, in the case of
discriminant ±p2, forms with, in the notation of Sections 7.5.3 and 7.5.4, either r or s in
{1, 8}. Similarly, for ∆E = ±p3, most of the curves we found come from forms in the eight
one-parameter families described in Section 7.5.1. We are unaware of a heuristic predicting
the number of curves of conductor p2 up to X that do not arise from twisting curves of
conductor p.

9.4. Thue equations. It is noteworthy that all solutions we encountered to the Thue equa-
tions F (x, y) = 8 and F (x, y) = 8p under consideration satisfied |x|, |y| < 230. The “largest”
such solution corresponded to the equation

355x3 + 293x2y − 1310xy2 − 292y3 = 8,

where we have
(x, y) = (188455233,−82526573).
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This leads to the elliptic curve of conductor 948762329069,

E : y2 + xy + y = x2 − 2x2 + a4x+ a6,

with

a4 = −1197791024934480813341

and

a6 = 15955840837175565243579564368641.

Note that this curve does not actually correspond to a particularly impressive abc or Hall
conjecture (see Section 10 for the definition of this term) example.

In the following table, we collect data on the number of GL2(Z)-equivalence classes of
irreducible binary cubic forms of discriminant 4p or −4p for p in [0, X], denoted P3(0, X)
and P3(−X, 0), respectively. We also provide counts for those forms where the corresponding
equation F (x, y) = 8 has at least one integer solution, denoted P ∗3 (0, X) and P ∗3 (−X, 0) for
positive and negative discriminant forms, respectively.

X P3(0, X) P ∗3 (0, X) P3(−X, 0) P ∗3 (−X, 0)
103 23 22 78 61
104 204 163 740 453
105 1851 1159 6104 2641
106 16333 7668 53202 16079
107 147653 49866 466601 97074
108 1330934 314722 4126541 582792
109 12050910 1966105 36979557 3530820

2× 109 23418535 3408656 71676647 6080245
1010 109730653 12229663 334260481 21576585
1011 1004607003 76122366 3045402451 133115651
1012 9247369050 475831852 27938060315 828238359

Due to space limitations we did not compute these statistics in the second large computa-
tional run.

Our expectation is that the number of forms for which the equation F (x, y) = 8 has
solutions with absolute discriminant up to X is o(X) (i.e. this occurs for essentially “zero”
percent of forms; a first step in proving something is this direction can be found in recent
work of Akhtari and Bhargava [2]).

9.5. Elliptic curves with the same prime conductor. One might ask how many isomor-
phism classes of curves of a given prime conductor can occur. If one accepts recent heuristics
that predict that the Mordell-Weil rank of E/Q is absolutely bounded (see e.g. [52] and
[71]), then this number should also be so bounded. As noted by Brumer and Silverman [12],
there are 13 curves of conductor 61263451. Up to p < 1012, the largest number we encoun-
tered was for p = 530956036043, with 20 isogeny classes, corresponding to (a1, a2, a3, a4, a6)
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as follows :

(0,−1, 1,−1003, 37465) , (0,−1, 1,−1775, 45957) , (0,−1, 1,−38939, 2970729) ,
(0,−1, 1,−659,−35439) , (0,−1, 1, 2011, 4311) , (0,−2, 1,−27597,−1746656) ,
(0,−2, 1, 57, 35020) , (1,−1, 0,−13337473, 18751485796) , (0, 0, 1,−13921, 633170) ,
(0, 0, 1,−30292,−2029574) , (0, 0, 1,−6721,−214958) , (0, 0, 1,−845710,−299350726) ,
(0, 0, 1,−86411851, 309177638530) , (0, 0, 1,−10717, 428466) , (1,−1, 0,−5632177, 5146137924) ,
(1,−1, 0, 878, 33379) , (1,−1, 1, 1080, 32014) , (1,−2, 1,−8117,−278943) ,
(1,−3, 0,−2879, 71732) , (1,−3, 0,−30415,−2014316) .

All have discriminant −p. Elkies [25] found examples of rather larger conductor with more
curves, including 21 classes for p = 14425386253757 and discriminant p, and 24 classes for
p = 998820191314747 and discriminant −p. Our computations confirm, with high likelihood,
that, for p < 2 × 1013, the number of isomorphism classes of elliptic curves of conductor a
fixed prime p is at most 21.

9.6. Rank and discriminant records. In the following table, we list the smallest prime
conductor with a given Mordell-Weil rank. These were computed by running through our
data, using Rubinstein’s upper bounds for analytic ranks (as implemented in Sage) to search
for candidate curves of “large” rank which were then checked using mwrank [18]. The last
entry corresponds to a curve of rank 6 with minimal positive prime discriminant; we have not
yet ruled out the existence of a rank 6 curve with smaller absolute (negative) discriminant.

N (a1, a2, a3, a4, a6) sign(∆E) rk(E(Q)
37 (0, 0, 1,−1, 0) + 1
389 (0, 1, 1,−2, 0) + 2
5077 (0, 0, 1,−7, 6) + 3

501029 (0, 1, 1,−72, 210) + 4
19047851 (0, 0, 1,−79, 342) − 5

6756532597 (0, 0, 1,−547,−2934) + 6

It is perhaps noteworthy that the curve listed here of rank 6 has the smallest known
minimal discriminant for such a curve (see Table 4 of Elkies and Watkins [27]).

If we are interested in similar records over all curves, including composite conductors, we
have

N (a1, a2, a3, a4, a6) sign(∆E) rk(E(Q)
37 (0, 0, 1,−1, 0) + 1
389 (0, 1, 1,−2, 0] + 2
5077 (0, 0, 1,−7, 6) + 3

234446 (1,−1, 0,−79, 289) + 4
19047851 (0, 0, 1,−79, 342) − 5

5187563742 (1, 1, 0,−2582, 48720) + 6
382623908456 (0, 0, 0,−10012, 346900) + 7

Here, the curves listed above the line are proven to be those of smallest conductor with
the given rank. Those listed below the line have the smallest known conductor for the
corresponding rank. It is our belief that the techniques of this paper should enable one to
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determine whether the curve listed here of rank 5 has the smallest conductor of any curve
with this property.

10. Completeness of our data

As a final result, we will present something that might, optimistically, be viewed as evi-
dence that our “heuristic” approach, in practice, enables us to actually find all elliptic curves
of prime conductor p < 2× 1013.

A conjecture of Hall, admittedly one that without modification is widely disbelieved at
present, is that if x and y are integers for which x3 − y2 is nonzero, then the Hall ratio

Hx,y =
|x|1/2

|x3 − y2|
is absolutely bounded. The pair (x, y) corresponding to the largest known Hall ratio comes
from the identity

58538865167812233 − 4478849284284020423079182 = 1641843,

noted by Elkies [26], with Hx,y > 46.6. All other examples known currently have Hx,y < 7.
We prove the following.

Proposition 8. If there is an elliptic curve E with conductor p < 2 × 1013, corresponding
via Theorem 1 to a cubic form F and u, v ∈ Z, such that

F (u, v) = 8 and max{|u|, |v|} ≥ 2128,

then
Hc4(E),c6(E) > 1.5× 106. (39)

In other words, if there is an elliptic curve E with conductor p < 2 × 1013 that we have
missed in our heuristic search, then we necessarily have inequality (39) (and hence a record-
setting Hall ratio).

Proof. The main idea behind our proof is that the roots of the Hessian HF (x, 1) have no
particularly good reason to be close to those of the polynomial F (x, 1). It follows that, if we
have relatively large integers u and v satisfying the Thue equation F (u, v) = 8 (so that u/v
is close to a root of F (x, 1) = 0), our expectation is that not only does HF (u, v) fail to be
small, but, in fact, we should have inequalities of the order of

HF (u, v)� (max{|u|, |v|})2 and GF (u, v)� (max{|u|, |v|})3

(where the Vinogradov symbol hides a possible dependence on p). Since

c4(E) = D2HF (u, v) and c6(E) = −1

2
D3GF (u, v),

where D ∈ {1, 2}, these would imply that

Hc4(E),c6(E) �p
1

p
max{|u|, |v|}.

In fact, for forms (and curves) of positive discriminant, we can deduce inequalities of the
shape

Hc4(E),c6(E) �p p
−3/4 min{|u|, |v|} � p−5/4 max{|u|, |v|},
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where the implicit constants are absolute. For curves of negative discriminant, we have a
slightly weaker result :

Hc4(E),c6(E) �p p
−1 min{|u|, |v|} � p−3/2 max{|u|, |v|}.

To make this argument precise, let us write, for concision, c4 = c4(E) and c6 = c6(E).
From the identity |c34 − c26| = 1728p, we have a Hall ratio

Hc4,c6 =
|c4|1/2

1728p
>

|c4|1/2

3.456× 1016
≥ |HF (u, v)|1/2

3.456× 1016
.

Our goal will thus be to obtain a lower bound upon |HF (u, v)| – we claim that, in fact,
|HF (u, v)| > 3× 1045, whereby this Hall ratio exceeds 1.5× 106, as stated. Suppose that we
have a cubic form F and integers u and v with DF = ±4p for p prime,

max{|u|, |v|} ≥ 2128 and 2× 109 < p < 2× 1013. (40)

Notice that F (u, 0) = ω0u
3 = 8 and hence (40) implies that v 6= 0.

Write
F (u, v) = ω0(u− α1v)(u− α2v)(u− α3v)

and suppose that
|u− α1v| = min{|u− αiv|, i = 1, 2, 3}.

We may further assume, without loss of generality, that the form F is reduced. From (6),
we have

ω2
0 |HF (α1, 1)HF (α2, 1)HF (α3, 1)| = 16 p2. (41)

For future use, we note that the main result of Mahler [40] implies the inequality

|ω0|
3∏
i=1

max{1, |αi|} ≤ |ω0|+ |ω1|+ |ω2|+ |ω3|. (42)

Let us assume first that DF > 0, whereby HF has negative discriminant (DHF = −3DF ).
Since F is reduced, we have

|ω1ω2 − 9ω0ω3| ≤ ω2
1 − 3ω0ω2 ≤ ω2

2 − 3ω1ω3,

and hence the identity

(ω1ω2 − 9ω0ω3)
2 − 4(ω2

1 − 3ω0ω2)(ω
2
2 − 3ω1ω3) = −3DF (43)

yields the inequalities

DF ≥ (ω2
1 − 3ω0ω2)(ω

2
2 − 3ω1ω3) ≥ (ω2

1 − 3ω0ω2)
2. (44)

Since (43) and DF > 0 imply that ω2
1 − 3ω0ω2 6= 0, we may write

HF (α1, 1)

ω2
1 − 3ω0ω2

=

(
α1 −

9ω0ω3 − ω1ω2 +
√
−3DF

2(ω2
1 − 3ω0ω2)

)(
α1 −

9ω0ω3 − ω1ω2 −
√
−3DF

2(ω2
1 − 3ω0ω2)

)
.

Defining

Γ1 = α1 −
9ω0ω3 − ω1ω2

2(ω2
1 − 3ω0ω2)

and Γ2 =

√
3DF

2(ω2
1 − 3ω0ω2)

,

we have
HF (α1, 1) =

(
ω2
1 − 3ω0ω2

) (
Γ2
1 + Γ2

2

)
44



and so

|HF (α1, 1)| > 3DF

4(ω2
1 − 3ω0ω2)

. (45)

Since α1 is “close” to u/v, it follows that the same is true for HF (α1, 1) and HF (u/v, 1) =
v−2HF (u, v). To make this precise, note that, via the Mean Value Theorem,

|HF (α1, 1)−HF (u/v, 1)| =
∣∣2(ω2

1 − 3ω0ω2)y + ω1ω2 − 9ω0ω3

∣∣ ∣∣∣α1 −
u

v

∣∣∣ , (46)

for some y lying between α1 and u/v. We thus have

|HF (α1, 1)−HF (u/v, 1)| ≤ (ω2
1 − 3ω0ω2)

(
2
(
|α1|+

∣∣∣α1 −
u

v

∣∣∣)+ 1
) ∣∣∣α1 −

u

v

∣∣∣ . (47)

To derive an upper bound upon
∣∣α1 − u

v

∣∣, we can argue as in the proof of Theorem 2 of
Pethő [54] to obtain the inequality∣∣∣α1 −

u

v

∣∣∣ ≤ 27/3D
−1/6
F v−2. (48)

Since |v| ≥ 1 and DF = 4p > 8× 109, we thus have that∣∣∣α1 −
u

v

∣∣∣ < 0.12. (49)

We may suppose that F is reduced, whereby, crudely, from Lemma ??,

|ω0| ≤
2D

1/4
F

3
√

3
and |ω1| ≤

3ω0

2
+

(√
DF −

27ω2
0

4

)1/2

<

(
1 +

1√
3

)
D

1/4
F .

From Proposition 5.5 of Belabas and Cohen [4],

|ω2| ≤

(
35 + 13

√
13

216

)1/3

D
1/3
F and |ω3| ≤

4

27
D

1/2
F ,

whence, after a little computation, we find that

|ω0|+ |ω1|+ |ω2|+ |ω3| < D
1/2
F = 2p1/2.

From (42), it follows that

|α1| ≤ |ω0|+ |ω1|+ |ω2|+ |ω3| < 2p1/2,

whereby inequalities (49) and (40) thus yield

|u/v| < 2p1/2 + 0.12 < 223.1,

and so, again appealing to (40), min{|u|, |v|} > 2104. Returning to inequality (47), we find
that, after applying (44),

|HF (α1, 1)−HF (u/v, 1)| ≤ 2p1/2
(
4p1/2 + 1.24

)
27/3(2p)−1/6v−2.

From p < 2× 1013 and |v| > 2104, it follows that

|HF (α1, 1)−HF (u/v, 1)| < 10−50.

Combining this with (44) and (45) yields the inequality

|HF (u/v, 1)| > 2p

|ω2
1 − 3ω0ω2|

,
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whence

|HF (u, v)| = v2 |HF (u/v, 1)| > 2v2p

|ω2
1 − 3ω0ω2|

≥ v2
√
p,

where the last inequality follows from (44). From (40) and the fact that |v| > 2104, we
conclude that

|HF (u, v)| > 1067.

Next, suppose that F has negative discriminant, so that HF has positive discriminant
DHF = −3DF . If ω2

1 − 3ω0ω2 = 0, then, from (43), we have that

3p = −(ω2
1 − 3ω0ω2)(ω

2
2 − 3ω1ω3),

which implies that
max

{
|ω2

1 − 3ω0ω2|, |ω2
2 − 3ω1ω3|

}
≥ p.

On the other hand, from Lemma 6.4 of Belabas and Cohen [4], we have

|ω0| ≤ 23/2p1/4

33/4
, |ω1| ≤ 23/2p1/4

31/4
, max{|ω0ω

3
2|, |ω3

1ω3|} ≤ (11+5
√
5)p

2
,

|ω1ω2| ≤ 8p1/2

31/2
and |ω0ω3| ≤ 2p1/2

31/2
,

(50)

whereby a short calculation, together with the fact that p > 2× 109, yields a contradiction.
We may thus suppose that ω2

1 − 3ω0ω2 6= 0. We have

HF (αi, 1) = (ω2
1 − 3ω0ω2) (αi − β1) (αi − β2) ,

where

βj =
9ω0ω3 − ω1ω2 + (−1)j

√
12p

2(ω2
1 − 3ω0ω2)

for j ∈ {1, 2}.

It follows that
|βj| ≤ |ω2

1 − 3ω0ω2|−144 · 3−1/2p1/2

and, again from (42),
|ω0αi| ≤ |ω0|+ |ω1|+ |ω2|+ |ω3|,

whereby

|ω0αi| ≤
23/2p1/4

33/4
+

23/2p1/4

31/4
+

22/3
(
11 + 5

√
5
)1/3

p1/2

31/2|ω0|
+

2p1/2

31/2|ω0|
,

whence we find that

|αi| ≤
3.4 p1/4

|ω0|
+

2.1 p1/2

|ω0|2
<

6.4 p1/2

|ω0|2
.

From (41), we thus have

|HF (α1, 1)| ≥ ω−20 (ω2
1 − 3ω0ω2)

−2 min

{
ω2
0

3.2
,
|ω2

1 − 3ω0ω2|
12.8

}2

.

If |ω2
1 − 3ω0ω2| > 4ω2

0, it follows that

|HF (α1, 1)| ≥ ω2
0

10.24 (ω2
1 − 3ω0ω2)2

and so

|HF (α1, 1)| ≥ 1

10.24 (233−1/2p1/2 + 22/331/2
(
11 + 5

√
5
)1/3

p1/2)2
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which implies that

|HF (α1, 1)| > 1

1561 p
. (51)

If, conversely, |ω2
1 − 3ω0ω2| ≤ 4ω2

0, then

|HF (α1, 1)| ≥ 1

163.84ω2
0

>
1

253
√
p

and hence (51) holds in either case.
Now if α1 6∈ R, then, via Mahler [41],

|Im(α1)| ≥
1

18
(|ω0|+ |ω1|+ |ω2|+ |ω3|)−2 >

ω2
0

738 p
,

so that ∣∣∣α1 −
u

v

∣∣∣ > ω2
0

738 p
and hence

8 = |ω0||v|3
∣∣∣α1 −

u

v

∣∣∣ ∣∣∣α2 −
u

v

∣∣∣ ∣∣∣α3 −
u

v

∣∣∣ > |ω0||v|3
(

ω2
0

738 p

)3

.

It follows that
|v| < 1476p < 2.952× 1016,

via (40). Since max{|u|, |v|} > 2128, we thus have

|u/v| > 1.15× 1022.

From
|α1| < 6.4p1/2 < 6.4

(
2× 1013

)1/2
< 3× 107,

we may thus conclude that ∣∣∣α1 −
u

v

∣∣∣ > 1.14× 1022

and so
8 ≥

(
1.14× 1022

)3
,

an immediate contradiction.
We may thus suppose that α1 ∈ R (so that α2, α3 6∈ R). It follows from Mahler [41] that∣∣∣αi − u

v

∣∣∣ > ω2
0

738 p
, for i ∈ {2, 3},

and so ∣∣∣α1 −
u

v

∣∣∣ < 8

|ω0||v|3

(
738p

ω2
0

)2

. (52)

Appealing to (40) and the inequalities |α1| < 3× 107 and |v| ≥ 1, we thus have that

|u/v| < 1.75× 1033 + 3× 107 < 1.76× 1033,

and so, from max{|u|, |v|} > 2128, |v| > 1.9× 105. Inequality (52) thus now implies

|u/v| < 2.6× 1017,

whence |v| > 1.3× 1021. Substituting this a third time into (52),∣∣∣α1 −
u

v

∣∣∣ < 10−30,
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so that |u/v| < 3.1× 107 and |v| > 1031. One final use of (52) thus yields the inequality∣∣∣α1 −
u

v

∣∣∣ < 10−59.

Appealing to (40), (46), (50), and the fact that |α1| < 3 × 107, we thus have, after a little
work,

|HF (α1, 1)−HF (u/v, 1)| < 3.4× 10−44.

With (51), this implies that

|HF (u/v, 1)| > 1

1562 p
and so

|HF (u, v)| = v2 |HF (u/v, 1)| > v2

1562p
>

1062

3124× 1013
> 3× 1045,

as claimed. �

11. Concluding remarks

Many of the techniques of this paper can be generalized to potentially treat the problem
of determining elliptic curves of a given conductor over a number field K. In case K is an
imaginary quadratic field of class number 1, then, in fact, such an approach works without
any especially new ingredients. We will discuss this in subsequent work.
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Besançon, 2015.

50

http://www.sagemath.org
http://www.sagemath.org


[72] B. M. M. de Weger, Algorithms for diophantine equations, CWI-Tract No. 65, Centre for Mathematics
and Computer Science, Amsterdam, 1989.

[73] B. M. M. de Weger, The weighted sum of two S-units being a square, Indag. Mathem. 1 (1990), 243–262.
[74] A. Wiles, Modular elliptic curves and Fermat’s Last Theorem, Ann. Math. 141 (1995), 443–551.

Department of Mathematics, University of British Columbia, Vancouver BC
E-mail address: bennett@math.ubc.edu

Department of Mathematics, University of British Columbia, Vancouver BC
E-mail address: ghergaa@math.ubc.edu

Department of Mathematics, University of British Columbia, Vancouver BC
E-mail address: andrewr@math.ubc.edu

51


	1. Introduction
	2. Elliptic curves
	3. Cubic forms : the main theorem and algorithm
	3.1. Remarks
	3.2. The algorithm

	4. Proof of Theorem 1
	5. Finding representative forms
	5.1. Irreducible Forms
	5.2. Reducible forms
	5.3. Computing forms of fixed discriminant
	5.4. GL2(Z) vs SL2(Z)

	6. Examples
	6.1. Cases without irreducible forms
	6.2. Cases with fixed conductor (and corresponding irreducible forms)
	6.3. Curves with good reduction outside { 2, 3, 23 } : an example of Koutsianis and of von Kanel and Matchke
	6.4. Curves with good reduction outside { 2, 3, 5, 7, 11 } : an example of von Kanel and Matschke

	7. Good reduction outside a single prime
	7.1. Conductor N=p
	7.2. Conductor N=p2
	7.3. Reducible forms
	7.4. Irreducible forms : conductor p
	7.5. Irreducible forms : conductor p2

	8. Computational details
	8.1. Generating the required forms
	8.2. Complete solution of Thue equations : conductor p
	8.3. Non-exhaustive, heuristic solution of Thue equations
	8.4. Conversion to curves
	8.5. Conductor p2

	9. Data
	9.1. Previous work
	9.2. Counts : conductor p
	9.3. Counts : conductor p2
	9.4. Thue equations
	9.5. Elliptic curves with the same prime conductor
	9.6. Rank and discriminant records

	10. Completeness of our data
	11. Concluding remarks
	12. Acknowledgements
	References

